

RFC: 793

 TRANSMISSION CONTROL PROTOCOL

 DARPA INTERNET PROGRAM

 PROTOCOL SPECIFICATION

 September 1981

 prepared for

 Defense Advanced Research Projects Agency
 Information Processing Techniques Office
 1400 Wilson Boulevard
 Arlington, Virginia 22209

 by

 Information Sciences Institute
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, California 90291

September 1981
 Transmission Control Protocol

 TABLE OF CONTENTS

 PREFACE .. iii

1. INTRODUCTION ... 1

 1.1 Motivation .. 1
 1.2 Scope ... 2
 1.3 About This Document ... 2
 1.4 Interfaces .. 3
 1.5 Operation ... 3

2. PHILOSOPHY ... 7

 2.1 Elements of the Internetwork System 7
 2.2 Model of Operation .. 7
 2.3 The Host Environment .. 8
 2.4 Interfaces .. 9
 2.5 Relation to Other Protocols 9
 2.6 Reliable Communication .. 9
 2.7 Connection Establishment and Clearing 10
 2.8 Data Communication ... 12
 2.9 Precedence and Security 13
 2.10 Robustness Principle ... 13

3. FUNCTIONAL SPECIFICATION .. 15

 3.1 Header Format .. 15
 3.2 Terminology .. 19
 3.3 Sequence Numbers ... 24
 3.4 Establishing a connection 30
 3.5 Closing a Connection ... 37
 3.6 Precedence and Security 40
 3.7 Data Communication ... 40
 3.8 Interfaces ... 44
 3.9 Event Processing ... 52

GLOSSARY .. 79

REFERENCES .. 85

 [Page i]

 September 1981
Transmission Control Protocol

[Page ii]

September 1981
 Transmission Control Protocol

 PREFACE

This document describes the DoD Standard Transmission Control Protocol
(TCP). There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition clarifies
several details and removes the end-of-letter buffer-size adjustments,
and redescribes the letter mechanism as a push function.

 Jon Postel

 Editor

 [Page iii]

RFC: 793
Replaces: RFC 761
IENs: 129, 124, 112, 81,
55, 44, 40, 27, 21, 5

 TRANSMISSION CONTROL PROTOCOL

 DARPA INTERNET PROGRAM
 PROTOCOL SPECIFICATION

 1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and in interconnected systems of such networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services.

1.1. Motivation

 Computer communication systems are playing an increasingly important
 role in military, government, and civilian environments. This
 document focuses its attention primarily on military computer
 communication requirements, especially robustness in the presence of
 communication unreliability and availability in the presence of
 congestion, but many of these problems are found in the civilian and
 government sector as well.

 As strategic and tactical computer communication networks are
 developed and deployed, it is essential to provide means of
 interconnecting them and to provide standard interprocess
 communication protocols which can support a broad range of
 applications. In anticipation of the need for such standards, the
 Deputy Undersecretary of Defense for Research and Engineering has
 declared the Transmission Control Protocol (TCP) described herein to
 be a basis for DoD-wide inter-process communication protocol
 standardization.

 TCP is a connection-oriented, end-to-end reliable protocol designed to
 fit into a layered hierarchy of protocols which support multi-network
 applications. The TCP provides for reliable inter-process
 communication between pairs of processes in host computers attached to
 distinct but interconnected computer communication networks. Very few
 assumptions are made as to the reliability of the communication
 protocols below the TCP layer. TCP assumes it can obtain a simple,
 potentially unreliable datagram service from the lower level
 protocols. In principle, the TCP should be able to operate above a
 wide spectrum of communication systems ranging from hard-wired
 connections to packet-switched or circuit-switched networks.

 [Page 1]

 September 1981
Transmission Control Protocol
Introduction

 TCP is based on concepts first described by Cerf and Kahn in [1]. The
 TCP fits into a layered protocol architecture just above a basic
 Internet Protocol [2] which provides a way for the TCP to send and
 receive variable-length segments of information enclosed in internet
 datagram "envelopes". The internet datagram provides a means for
 addressing source and destination TCPs in different networks. The
 internet protocol also deals with any fragmentation or reassembly of
 the TCP segments required to achieve transport and delivery through
 multiple networks and interconnecting gateways. The internet protocol
 also carries information on the precedence, security classification
 and compartmentation of the TCP segments, so this information can be
 communicated end-to-end across multiple networks.

 Protocol Layering

 +---------------------+
 | higher-level |
 +---------------------+
 | TCP |
 +---------------------+
 | internet protocol |
 +---------------------+
 |communication network|
 +---------------------+

 Figure 1

 Much of this document is written in the context of TCP implementations
 which are co-resident with higher level protocols in the host
 computer. Some computer systems will be connected to networks via
 front-end computers which house the TCP and internet protocol layers,
 as well as network specific software. The TCP specification describes
 an interface to the higher level protocols which appears to be
 implementable even for the front-end case, as long as a suitable
 host-to-front end protocol is implemented.

1.2. Scope

 The TCP is intended to provide a reliable process-to-process
 communication service in a multinetwork environment. The TCP is
 intended to be a host-to-host protocol in common use in multiple
 networks.

1.3. About this Document

 This document represents a specification of the behavior required of
 any TCP implementation, both in its interactions with higher level
 protocols and in its interactions with other TCPs. The rest of this

[Page 2]

September 1981
 Transmission Control Protocol
 Introduction

 section offers a very brief view of the protocol interfaces and
 operation. Section 2 summarizes the philosophical basis for the TCP
 design. Section 3 offers both a detailed description of the actions
 required of TCP when various events occur (arrival of new segments,
 user calls, errors, etc.) and the details of the formats of TCP
 segments.

1.4. Interfaces

 The TCP interfaces on one side to user or application processes and on
 the other side to a lower level protocol such as Internet Protocol.

 The interface between an application process and the TCP is
 illustrated in reasonable detail. This interface consists of a set of
 calls much like the calls an operating system provides to an
 application process for manipulating files. For example, there are
 calls to open and close connections and to send and receive data on
 established connections. It is also expected that the TCP can
 asynchronously communicate with application programs. Although
 considerable freedom is permitted to TCP implementors to design
 interfaces which are appropriate to a particular operating system
 environment, a minimum functionality is required at the TCP/user
 interface for any valid implementation.

 The interface between TCP and lower level protocol is essentially
 unspecified except that it is assumed there is a mechanism whereby the
 two levels can asynchronously pass information to each other.
 Typically, one expects the lower level protocol to specify this
 interface. TCP is designed to work in a very general environment of
 interconnected networks. The lower level protocol which is assumed
 throughout this document is the Internet Protocol [2].

1.5. Operation

 As noted above, the primary purpose of the TCP is to provide reliable,
 securable logical circuit or connection service between pairs of
 processes. To provide this service on top of a less reliable internet
 communication system requires facilities in the following areas:

 Basic Data Transfer
 Reliability
 Flow Control
 Multiplexing
 Connections
 Precedence and Security

 The basic operation of the TCP in each of these areas is described in
 the following paragraphs.

 [Page 3]

 September 1981
Transmission Control Protocol
Introduction

 Basic Data Transfer:

 The TCP is able to transfer a continuous stream of octets in each
 direction between its users by packaging some number of octets into
 segments for transmission through the internet system. In general,
 the TCPs decide when to block and forward data at their own
 convenience.

 Sometimes users need to be sure that all the data they have
 submitted to the TCP has been transmitted. For this purpose a push
 function is defined. To assure that data submitted to a TCP is
 actually transmitted the sending user indicates that it should be
 pushed through to the receiving user. A push causes the TCPs to
 promptly forward and deliver data up to that point to the receiver.
 The exact push point might not be visible to the receiving user and
 the push function does not supply a record boundary marker.

 Reliability:

 The TCP must recover from data that is damaged, lost, duplicated, or
 delivered out of order by the internet communication system. This
 is achieved by assigning a sequence number to each octet
 transmitted, and requiring a positive acknowledgment (ACK) from the
 receiving TCP. If the ACK is not received within a timeout
 interval, the data is retransmitted. At the receiver, the sequence
 numbers are used to correctly order segments that may be received
 out of order and to eliminate duplicates. Damage is handled by
 adding a checksum to each segment transmitted, checking it at the
 receiver, and discarding damaged segments.

 As long as the TCPs continue to function properly and the internet
 system does not become completely partitioned, no transmission
 errors will affect the correct delivery of data. TCP recovers from
 internet communication system errors.

 Flow Control:

 TCP provides a means for the receiver to govern the amount of data
 sent by the sender. This is achieved by returning a "window" with
 every ACK indicating a range of acceptable sequence numbers beyond
 the last segment successfully received. The window indicates an
 allowed number of octets that the sender may transmit before
 receiving further permission.

[Page 4]

September 1981
 Transmission Control Protocol
 Introduction

 Multiplexing:

 To allow for many processes within a single Host to use TCP
 communication facilities simultaneously, the TCP provides a set of
 addresses or ports within each host. Concatenated with the network
 and host addresses from the internet communication layer, this forms
 a socket. A pair of sockets uniquely identifies each connection.
 That is, a socket may be simultaneously used in multiple
 connections.

 The binding of ports to processes is handled independently by each
 Host. However, it proves useful to attach frequently used processes
 (e.g., a "logger" or timesharing service) to fixed sockets which are
 made known to the public. These services can then be accessed
 through the known addresses. Establishing and learning the port
 addresses of other processes may involve more dynamic mechanisms.

 Connections:

 The reliability and flow control mechanisms described above require
 that TCPs initialize and maintain certain status information for
 each data stream. The combination of this information, including
 sockets, sequence numbers, and window sizes, is called a connection.
 Each connection is uniquely specified by a pair of sockets
 identifying its two sides.

 When two processes wish to communicate, their TCP’s must first
 establish a connection (initialize the status information on each
 side). When their communication is complete, the connection is
 terminated or closed to free the resources for other uses.

 Since connections must be established between unreliable hosts and
 over the unreliable internet communication system, a handshake
 mechanism with clock-based sequence numbers is used to avoid
 erroneous initialization of connections.

 Precedence and Security:

 The users of TCP may indicate the security and precedence of their
 communication. Provision is made for default values to be used when
 these features are not needed.

 [Page 5]

 September 1981
Transmission Control Protocol

[Page 6]

September 1981
 Transmission Control Protocol

 2. PHILOSOPHY

2.1. Elements of the Internetwork System

 The internetwork environment consists of hosts connected to networks
 which are in turn interconnected via gateways. It is assumed here
 that the networks may be either local networks (e.g., the ETHERNET) or
 large networks (e.g., the ARPANET), but in any case are based on
 packet switching technology. The active agents that produce and
 consume messages are processes. Various levels of protocols in the
 networks, the gateways, and the hosts support an interprocess
 communication system that provides two-way data flow on logical
 connections between process ports.

 The term packet is used generically here to mean the data of one
 transaction between a host and its network. The format of data blocks
 exchanged within the a network will generally not be of concern to us.

 Hosts are computers attached to a network, and from the communication
 network’s point of view, are the sources and destinations of packets.
 Processes are viewed as the active elements in host computers (in
 accordance with the fairly common definition of a process as a program
 in execution). Even terminals and files or other I/O devices are
 viewed as communicating with each other through the use of processes.
 Thus, all communication is viewed as inter-process communication.

 Since a process may need to distinguish among several communication
 streams between itself and another process (or processes), we imagine
 that each process may have a number of ports through which it
 communicates with the ports of other processes.

2.2. Model of Operation

 Processes transmit data by calling on the TCP and passing buffers of
 data as arguments. The TCP packages the data from these buffers into
 segments and calls on the internet module to transmit each segment to
 the destination TCP. The receiving TCP places the data from a segment
 into the receiving user’s buffer and notifies the receiving user. The
 TCPs include control information in the segments which they use to
 ensure reliable ordered data transmission.

 The model of internet communication is that there is an internet
 protocol module associated with each TCP which provides an interface
 to the local network. This internet module packages TCP segments
 inside internet datagrams and routes these datagrams to a destination
 internet module or intermediate gateway. To transmit the datagram
 through the local network, it is embedded in a local network packet.

 The packet switches may perform further packaging, fragmentation, or

 [Page 7]

 September 1981
Transmission Control Protocol
Philosophy

 other operations to achieve the delivery of the local packet to the
 destination internet module.

 At a gateway between networks, the internet datagram is "unwrapped"
 from its local packet and examined to determine through which network
 the internet datagram should travel next. The internet datagram is
 then "wrapped" in a local packet suitable to the next network and
 routed to the next gateway, or to the final destination.

 A gateway is permitted to break up an internet datagram into smaller
 internet datagram fragments if this is necessary for transmission
 through the next network. To do this, the gateway produces a set of
 internet datagrams; each carrying a fragment. Fragments may be
 further broken into smaller fragments at subsequent gateways. The
 internet datagram fragment format is designed so that the destination
 internet module can reassemble fragments into internet datagrams.

 A destination internet module unwraps the segment from the datagram
 (after reassembling the datagram, if necessary) and passes it to the
 destination TCP.

 This simple model of the operation glosses over many details. One
 important feature is the type of service. This provides information
 to the gateway (or internet module) to guide it in selecting the
 service parameters to be used in traversing the next network.
 Included in the type of service information is the precedence of the
 datagram. Datagrams may also carry security information to permit
 host and gateways that operate in multilevel secure environments to
 properly segregate datagrams for security considerations.

2.3. The Host Environment

 The TCP is assumed to be a module in an operating system. The users
 access the TCP much like they would access the file system. The TCP
 may call on other operating system functions, for example, to manage
 data structures. The actual interface to the network is assumed to be
 controlled by a device driver module. The TCP does not call on the
 network device driver directly, but rather calls on the internet
 datagram protocol module which may in turn call on the device driver.

 The mechanisms of TCP do not preclude implementation of the TCP in a
 front-end processor. However, in such an implementation, a
 host-to-front-end protocol must provide the functionality to support
 the type of TCP-user interface described in this document.

[Page 8]

September 1981
 Transmission Control Protocol
 Philosophy

2.4. Interfaces

 The TCP/user interface provides for calls made by the user on the TCP
 to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
 STATUS about a connection. These calls are like other calls from user
 programs on the operating system, for example, the calls to open, read
 from, and close a file.

 The TCP/internet interface provides calls to send and receive
 datagrams addressed to TCP modules in hosts anywhere in the internet
 system. These calls have parameters for passing the address, type of
 service, precedence, security, and other control information.

2.5. Relation to Other Protocols

 The following diagram illustrates the place of the TCP in the protocol
 hierarchy:

 +------+ +-----+ +-----+ +-----+
 |Telnet| | FTP | |Voice| ... | | Application Level
 +------+ +-----+ +-----+ +-----+
 | | | |
 +-----+ +-----+ +-----+
 | TCP | | RTP | ... | | Host Level
 +-----+ +-----+ +-----+
 | | |
 +-------------------------------+
 | Internet Protocol & ICMP | Gateway Level
 +-------------------------------+
 |
 +---------------------------+
 | Local Network Protocol | Network Level
 +---------------------------+

 Protocol Relationships

 Figure 2.

 It is expected that the TCP will be able to support higher level
 protocols efficiently. It should be easy to interface higher level
 protocols like the ARPANET Telnet or AUTODIN II THP to the TCP.

2.6. Reliable Communication

 A stream of data sent on a TCP connection is delivered reliably and in
 order at the destination.

 [Page 9]

 September 1981
Transmission Control Protocol
Philosophy

 Transmission is made reliable via the use of sequence numbers and
 acknowledgments. Conceptually, each octet of data is assigned a
 sequence number. The sequence number of the first octet of data in a
 segment is transmitted with that segment and is called the segment
 sequence number. Segments also carry an acknowledgment number which
 is the sequence number of the next expected data octet of
 transmissions in the reverse direction. When the TCP transmits a
 segment containing data, it puts a copy on a retransmission queue and
 starts a timer; when the acknowledgment for that data is received, the
 segment is deleted from the queue. If the acknowledgment is not
 received before the timer runs out, the segment is retransmitted.

 An acknowledgment by TCP does not guarantee that the data has been
 delivered to the end user, but only that the receiving TCP has taken
 the responsibility to do so.

 To govern the flow of data between TCPs, a flow control mechanism is
 employed. The receiving TCP reports a "window" to the sending TCP.
 This window specifies the number of octets, starting with the
 acknowledgment number, that the receiving TCP is currently prepared to
 receive.

2.7. Connection Establishment and Clearing

 To identify the separate data streams that a TCP may handle, the TCP
 provides a port identifier. Since port identifiers are selected
 independently by each TCP they might not be unique. To provide for
 unique addresses within each TCP, we concatenate an internet address
 identifying the TCP with a port identifier to create a socket which
 will be unique throughout all networks connected together.

 A connection is fully specified by the pair of sockets at the ends. A
 local socket may participate in many connections to different foreign
 sockets. A connection can be used to carry data in both directions,
 that is, it is "full duplex".

 TCPs are free to associate ports with processes however they choose.
 However, several basic concepts are necessary in any implementation.
 There must be well-known sockets which the TCP associates only with
 the "appropriate" processes by some means. We envision that processes
 may "own" ports, and that processes can initiate connections only on
 the ports they own. (Means for implementing ownership is a local
 issue, but we envision a Request Port user command, or a method of
 uniquely allocating a group of ports to a given process, e.g., by
 associating the high order bits of a port name with a given process.)

 A connection is specified in the OPEN call by the local port and
 foreign socket arguments. In return, the TCP supplies a (short) local

[Page 10]

September 1981
 Transmission Control Protocol
 Philosophy

 connection name by which the user refers to the connection in
 subsequent calls. There are several things that must be remembered
 about a connection. To store this information we imagine that there
 is a data structure called a Transmission Control Block (TCB). One
 implementation strategy would have the local connection name be a
 pointer to the TCB for this connection. The OPEN call also specifies
 whether the connection establishment is to be actively pursued, or to
 be passively waited for.

 A passive OPEN request means that the process wants to accept incoming
 connection requests rather than attempting to initiate a connection.
 Often the process requesting a passive OPEN will accept a connection
 request from any caller. In this case a foreign socket of all zeros
 is used to denote an unspecified socket. Unspecified foreign sockets
 are allowed only on passive OPENs.

 A service process that wished to provide services for unknown other
 processes would issue a passive OPEN request with an unspecified
 foreign socket. Then a connection could be made with any process that
 requested a connection to this local socket. It would help if this
 local socket were known to be associated with this service.

 Well-known sockets are a convenient mechanism for a priori associating
 a socket address with a standard service. For instance, the
 "Telnet-Server" process is permanently assigned to a particular
 socket, and other sockets are reserved for File Transfer, Remote Job
 Entry, Text Generator, Echoer, and Sink processes (the last three
 being for test purposes). A socket address might be reserved for
 access to a "Look-Up" service which would return the specific socket
 at which a newly created service would be provided. The concept of a
 well-known socket is part of the TCP specification, but the assignment
 of sockets to services is outside this specification. (See [4].)

 Processes can issue passive OPENs and wait for matching active OPENs
 from other processes and be informed by the TCP when connections have
 been established. Two processes which issue active OPENs to each
 other at the same time will be correctly connected. This flexibility
 is critical for the support of distributed computing in which
 components act asynchronously with respect to each other.

 There are two principal cases for matching the sockets in the local
 passive OPENs and an foreign active OPENs. In the first case, the
 local passive OPENs has fully specified the foreign socket. In this
 case, the match must be exact. In the second case, the local passive
 OPENs has left the foreign socket unspecified. In this case, any
 foreign socket is acceptable as long as the local sockets match.
 Other possibilities include partially restricted matches.

 [Page 11]

 September 1981
Transmission Control Protocol
Philosophy

 If there are several pending passive OPENs (recorded in TCBs) with the
 same local socket, an foreign active OPEN will be matched to a TCB
 with the specific foreign socket in the foreign active OPEN, if such a
 TCB exists, before selecting a TCB with an unspecified foreign socket.

 The procedures to establish connections utilize the synchronize (SYN)
 control flag and involves an exchange of three messages. This
 exchange has been termed a three-way hand shake [3].

 A connection is initiated by the rendezvous of an arriving segment
 containing a SYN and a waiting TCB entry each created by a user OPEN
 command. The matching of local and foreign sockets determines when a
 connection has been initiated. The connection becomes "established"
 when sequence numbers have been synchronized in both directions.

 The clearing of a connection also involves the exchange of segments,
 in this case carrying the FIN control flag.

2.8. Data Communication

 The data that flows on a connection may be thought of as a stream of
 octets. The sending user indicates in each SEND call whether the data
 in that call (and any preceeding calls) should be immediately pushed
 through to the receiving user by the setting of the PUSH flag.

 A sending TCP is allowed to collect data from the sending user and to
 send that data in segments at its own convenience, until the push
 function is signaled, then it must send all unsent data. When a
 receiving TCP sees the PUSH flag, it must not wait for more data from
 the sending TCP before passing the data to the receiving process.

 There is no necessary relationship between push functions and segment
 boundaries. The data in any particular segment may be the result of a
 single SEND call, in whole or part, or of multiple SEND calls.

 The purpose of push function and the PUSH flag is to push data through
 from the sending user to the receiving user. It does not provide a
 record service.

 There is a coupling between the push function and the use of buffers
 of data that cross the TCP/user interface. Each time a PUSH flag is
 associated with data placed into the receiving user’s buffer, the
 buffer is returned to the user for processing even if the buffer is
 not filled. If data arrives that fills the user’s buffer before a
 PUSH is seen, the data is passed to the user in buffer size units.

 TCP also provides a means to communicate to the receiver of data that
 at some point further along in the data stream than the receiver is

[Page 12]

September 1981
 Transmission Control Protocol
 Philosophy

 currently reading there is urgent data. TCP does not attempt to
 define what the user specifically does upon being notified of pending
 urgent data, but the general notion is that the receiving process will
 take action to process the urgent data quickly.

2.9. Precedence and Security

 The TCP makes use of the internet protocol type of service field and
 security option to provide precedence and security on a per connection
 basis to TCP users. Not all TCP modules will necessarily function in
 a multilevel secure environment; some may be limited to unclassified
 use only, and others may operate at only one security level and
 compartment. Consequently, some TCP implementations and services to
 users may be limited to a subset of the multilevel secure case.

 TCP modules which operate in a multilevel secure environment must
 properly mark outgoing segments with the security, compartment, and
 precedence. Such TCP modules must also provide to their users or
 higher level protocols such as Telnet or THP an interface to allow
 them to specify the desired security level, compartment, and
 precedence of connections.

2.10. Robustness Principle

 TCP implementations will follow a general principle of robustness: be
 conservative in what you do, be liberal in what you accept from
 others.

 [Page 13]

 September 1981
Transmission Control Protocol

[Page 14]

September 1981
 Transmission Control Protocol

 3. FUNCTIONAL SPECIFICATION

3.1. Header Format

 TCP segments are sent as internet datagrams. The Internet Protocol
 header carries several information fields, including the source and
 destination host addresses [2]. A TCP header follows the internet
 header, supplying information specific to the TCP protocol. This
 division allows for the existence of host level protocols other than
 TCP.

 TCP Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

 TCP Header Format

 Note that one tick mark represents one bit position.

 Figure 3.

 Source Port: 16 bits

 The source port number.

 Destination Port: 16 bits

 The destination port number.

 [Page 15]

 September 1981
Transmission Control Protocol
Functional Specification

 Sequence Number: 32 bits

 The sequence number of the first data octet in this segment (except
 when SYN is present). If SYN is present the sequence number is the
 initial sequence number (ISN) and the first data octet is ISN+1.

 Acknowledgment Number: 32 bits

 If the ACK control bit is set this field contains the value of the
 next sequence number the sender of the segment is expecting to
 receive. Once a connection is established this is always sent.

 Data Offset: 4 bits

 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.

 Reserved: 6 bits

 Reserved for future use. Must be zero.

 Control Bits: 6 bits (from left to right):

 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

 Window: 16 bits

 The number of data octets beginning with the one indicated in the
 acknowledgment field which the sender of this segment is willing to
 accept.

 Checksum: 16 bits

 The checksum field is the 16 bit one’s complement of the one’s
 complement sum of all 16 bit words in the header and text. If a
 segment contains an odd number of header and text octets to be
 checksummed, the last octet is padded on the right with zeros to
 form a 16 bit word for checksum purposes. The pad is not
 transmitted as part of the segment. While computing the checksum,
 the checksum field itself is replaced with zeros.

 The checksum also covers a 96 bit pseudo header conceptually

[Page 16]

September 1981
 Transmission Control Protocol
 Functional Specification

 prefixed to the TCP header. This pseudo header contains the Source
 Address, the Destination Address, the Protocol, and TCP length.
 This gives the TCP protection against misrouted segments. This
 information is carried in the Internet Protocol and is transferred
 across the TCP/Network interface in the arguments or results of
 calls by the TCP on the IP.

 +--------+--------+--------+--------+
 | Source Address |
 +--------+--------+--------+--------+
 | Destination Address |
 +--------+--------+--------+--------+
 | zero | PTCL | TCP Length |
 +--------+--------+--------+--------+

 The TCP Length is the TCP header length plus the data length in
 octets (this is not an explicitly transmitted quantity, but is
 computed), and it does not count the 12 octets of the pseudo
 header.

 Urgent Pointer: 16 bits

 This field communicates the current value of the urgent pointer as a
 positive offset from the sequence number in this segment. The
 urgent pointer points to the sequence number of the octet following
 the urgent data. This field is only be interpreted in segments with
 the URG control bit set.

 Options: variable

 Options may occupy space at the end of the TCP header and are a
 multiple of 8 bits in length. All options are included in the
 checksum. An option may begin on any octet boundary. There are two
 cases for the format of an option:

 Case 1: A single octet of option-kind.

 Case 2: An octet of option-kind, an octet of option-length, and
 the actual option-data octets.

 The option-length counts the two octets of option-kind and
 option-length as well as the option-data octets.

 Note that the list of options may be shorter than the data offset
 field might imply. The content of the header beyond the
 End-of-Option option must be header padding (i.e., zero).

 A TCP must implement all options.

 [Page 17]

 September 1981
Transmission Control Protocol
Functional Specification

 Currently defined options include (kind indicated in octal):

 Kind Length Meaning
 ---- ------ -------
 0 - End of option list.
 1 - No-Operation.
 2 4 Maximum Segment Size.

 Specific Option Definitions

 End of Option List

 +--------+
 |00000000|
 +--------+
 Kind=0

 This option code indicates the end of the option list. This
 might not coincide with the end of the TCP header according to
 the Data Offset field. This is used at the end of all options,
 not the end of each option, and need only be used if the end of
 the options would not otherwise coincide with the end of the TCP
 header.

 No-Operation

 +--------+
 |00000001|
 +--------+
 Kind=1

 This option code may be used between options, for example, to
 align the beginning of a subsequent option on a word boundary.
 There is no guarantee that senders will use this option, so
 receivers must be prepared to process options even if they do
 not begin on a word boundary.

 Maximum Segment Size

 +--------+--------+---------+--------+
 |00000010|00000100| max seg size |
 +--------+--------+---------+--------+
 Kind=2 Length=4

[Page 18]

September 1981
 Transmission Control Protocol
 Functional Specification

 Maximum Segment Size Option Data: 16 bits

 If this option is present, then it communicates the maximum
 receive segment size at the TCP which sends this segment.
 This field must only be sent in the initial connection request
 (i.e., in segments with the SYN control bit set). If this
 option is not used, any segment size is allowed.

 Padding: variable

 The TCP header padding is used to ensure that the TCP header ends
 and data begins on a 32 bit boundary. The padding is composed of
 zeros.

3.2. Terminology

 Before we can discuss very much about the operation of the TCP we need
 to introduce some detailed terminology. The maintenance of a TCP
 connection requires the remembering of several variables. We conceive
 of these variables being stored in a connection record called a
 Transmission Control Block or TCB. Among the variables stored in the
 TCB are the local and remote socket numbers, the security and
 precedence of the connection, pointers to the user’s send and receive
 buffers, pointers to the retransmit queue and to the current segment.
 In addition several variables relating to the send and receive
 sequence numbers are stored in the TCB.

 Send Sequence Variables

 SND.UNA - send unacknowledged
 SND.NXT - send next
 SND.WND - send window
 SND.UP - send urgent pointer
 SND.WL1 - segment sequence number used for last window update
 SND.WL2 - segment acknowledgment number used for last window
 update
 ISS - initial send sequence number

 Receive Sequence Variables

 RCV.NXT - receive next
 RCV.WND - receive window
 RCV.UP - receive urgent pointer
 IRS - initial receive sequence number

 [Page 19]

 September 1981
Transmission Control Protocol
Functional Specification

 The following diagrams may help to relate some of these variables to
 the sequence space.

 Send Sequence Space

 1 2 3 4
 ----------|----------|----------|----------
 SND.UNA SND.NXT SND.UNA
 +SND.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers of unacknowledged data
 3 - sequence numbers allowed for new data transmission
 4 - future sequence numbers which are not yet allowed

 Send Sequence Space

 Figure 4.

 The send window is the portion of the sequence space labeled 3 in
 figure 4.

 Receive Sequence Space

 1 2 3
 ----------|----------|----------
 RCV.NXT RCV.NXT
 +RCV.WND

 1 - old sequence numbers which have been acknowledged
 2 - sequence numbers allowed for new reception
 3 - future sequence numbers which are not yet allowed

 Receive Sequence Space

 Figure 5.

 The receive window is the portion of the sequence space labeled 2 in
 figure 5.

 There are also some variables used frequently in the discussion that
 take their values from the fields of the current segment.

[Page 20]

September 1981
 Transmission Control Protocol
 Functional Specification

 Current Segment Variables

 SEG.SEQ - segment sequence number
 SEG.ACK - segment acknowledgment number
 SEG.LEN - segment length
 SEG.WND - segment window
 SEG.UP - segment urgent pointer
 SEG.PRC - segment precedence value

 A connection progresses through a series of states during its
 lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
 ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
 TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
 because it represents the state when there is no TCB, and therefore,
 no connection. Briefly the meanings of the states are:

 LISTEN - represents waiting for a connection request from any remote
 TCP and port.

 SYN-SENT - represents waiting for a matching connection request
 after having sent a connection request.

 SYN-RECEIVED - represents waiting for a confirming connection
 request acknowledgment after having both received and sent a
 connection request.

 ESTABLISHED - represents an open connection, data received can be
 delivered to the user. The normal state for the data transfer phase
 of the connection.

 FIN-WAIT-1 - represents waiting for a connection termination request
 from the remote TCP, or an acknowledgment of the connection
 termination request previously sent.

 FIN-WAIT-2 - represents waiting for a connection termination request
 from the remote TCP.

 CLOSE-WAIT - represents waiting for a connection termination request
 from the local user.

 CLOSING - represents waiting for a connection termination request
 acknowledgment from the remote TCP.

 LAST-ACK - represents waiting for an acknowledgment of the
 connection termination request previously sent to the remote TCP
 (which includes an acknowledgment of its connection termination
 request).

 [Page 21]

 September 1981
Transmission Control Protocol
Functional Specification

 TIME-WAIT - represents waiting for enough time to pass to be sure
 the remote TCP received the acknowledgment of its connection
 termination request.

 CLOSED - represents no connection state at all.

 A TCP connection progresses from one state to another in response to
 events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
 ABORT, and STATUS; the incoming segments, particularly those
 containing the SYN, ACK, RST and FIN flags; and timeouts.

 The state diagram in figure 6 illustrates only state changes, together
 with the causing events and resulting actions, but addresses neither
 error conditions nor actions which are not connected with state
 changes. In a later section, more detail is offered with respect to
 the reaction of the TCP to events.

 NOTE BENE: this diagram is only a summary and must not be taken as
 the total specification.

[Page 22]

September 1981
 Transmission Control Protocol
 Functional Specification

 +---------+ ---------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 +---------+ CLOSE | \
 | LISTEN | ---------- | |
 +---------+ delete TCB | |
 rcv SYN | | SEND | |
 ----------- | | ------- | V
 +---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd ACK	
	------------------ -------------------	
+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+		
--------------		-----------
x		snd ACK
V V		
CLOSE +---------+		
-------	ESTAB	
snd FIN +---------+		
CLOSE		rcv FIN
V -------		-------
+---------+ snd FIN / \ snd ACK +---------+		
FIN	<----------------- ------------------>	CLOSE
WAIT-1	------------------	WAIT
+---------+ rcv FIN \ +---------+		
rcv ACK of FIN -------	CLOSE	
-------------- snd ACK	-------	
V x V snd FIN V		
+---------+ +---------+ +---------+		
FINWAIT-2		CLOSING
+---------+ +---------+ +---------+		
rcv ACK of FIN	rcv ACK of FIN	
rcv FIN --------------	Timeout=2MSL --------------	
------- x V ------------ x V		
 \ snd ACK +---------+delete TCB +---------+
 ------------------------>|TIME WAIT|------------------>| CLOSED |
 +---------+ +---------+

 TCP Connection State Diagram
 Figure 6.

 [Page 23]

 September 1981
Transmission Control Protocol
Functional Specification

3.3. Sequence Numbers

 A fundamental notion in the design is that every octet of data sent
 over a TCP connection has a sequence number. Since every octet is
 sequenced, each of them can be acknowledged. The acknowledgment
 mechanism employed is cumulative so that an acknowledgment of sequence
 number X indicates that all octets up to but not including X have been
 received. This mechanism allows for straight-forward duplicate
 detection in the presence of retransmission. Numbering of octets
 within a segment is that the first data octet immediately following
 the header is the lowest numbered, and the following octets are
 numbered consecutively.

 It is essential to remember that the actual sequence number space is
 finite, though very large. This space ranges from 0 to 2**32 - 1.
 Since the space is finite, all arithmetic dealing with sequence
 numbers must be performed modulo 2**32. This unsigned arithmetic
 preserves the relationship of sequence numbers as they cycle from
 2**32 - 1 to 0 again. There are some subtleties to computer modulo
 arithmetic, so great care should be taken in programming the
 comparison of such values. The symbol "=<" means "less than or equal"
 (modulo 2**32).

 The typical kinds of sequence number comparisons which the TCP must
 perform include:

 (a) Determining that an acknowledgment refers to some sequence
 number sent but not yet acknowledged.

 (b) Determining that all sequence numbers occupied by a segment
 have been acknowledged (e.g., to remove the segment from a
 retransmission queue).

 (c) Determining that an incoming segment contains sequence numbers
 which are expected (i.e., that the segment "overlaps" the
 receive window).

[Page 24]

September 1981
 Transmission Control Protocol
 Functional Specification

 In response to sending data the TCP will receive acknowledgments. The
 following comparisons are needed to process the acknowledgments.

 SND.UNA = oldest unacknowledged sequence number

 SND.NXT = next sequence number to be sent

 SEG.ACK = acknowledgment from the receiving TCP (next sequence
 number expected by the receiving TCP)

 SEG.SEQ = first sequence number of a segment

 SEG.LEN = the number of octets occupied by the data in the segment
 (counting SYN and FIN)

 SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

 A new acknowledgment (called an "acceptable ack"), is one for which
 the inequality below holds:

 SND.UNA < SEG.ACK =< SND.NXT

 A segment on the retransmission queue is fully acknowledged if the sum
 of its sequence number and length is less or equal than the
 acknowledgment value in the incoming segment.

 When data is received the following comparisons are needed:

 RCV.NXT = next sequence number expected on an incoming segments, and
 is the left or lower edge of the receive window

 RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
 segment, and is the right or upper edge of the receive window

 SEG.SEQ = first sequence number occupied by the incoming segment

 SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
 segment

 A segment is judged to occupy a portion of valid receive sequence
 space if

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 or

 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 [Page 25]

 September 1981
Transmission Control Protocol
Functional Specification

 The first part of this test checks to see if the beginning of the
 segment falls in the window, the second part of the test checks to see
 if the end of the segment falls in the window; if the segment passes
 either part of the test it contains data in the window.

 Actually, it is a little more complicated than this. Due to zero
 windows and zero length segments, we have four cases for the
 acceptability of an incoming segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 Note that when the receive window is zero no segments should be
 acceptable except ACK segments. Thus, it is be possible for a TCP to
 maintain a zero receive window while transmitting data and receiving
 ACKs. However, even when the receive window is zero, a TCP must
 process the RST and URG fields of all incoming segments.

 We have taken advantage of the numbering scheme to protect certain
 control information as well. This is achieved by implicitly including
 some control flags in the sequence space so they can be retransmitted
 and acknowledged without confusion (i.e., one and only one copy of the
 control will be acted upon). Control information is not physically
 carried in the segment data space. Consequently, we must adopt rules
 for implicitly assigning sequence numbers to control. The SYN and FIN
 are the only controls requiring this protection, and these controls
 are used only at connection opening and closing. For sequence number
 purposes, the SYN is considered to occur before the first actual data
 octet of the segment in which it occurs, while the FIN is considered
 to occur after the last actual data octet in a segment in which it
 occurs. The segment length (SEG.LEN) includes both data and sequence
 space occupying controls. When a SYN is present then SEG.SEQ is the
 sequence number of the SYN.

[Page 26]

September 1981
 Transmission Control Protocol
 Functional Specification

 Initial Sequence Number Selection

 The protocol places no restriction on a particular connection being
 used over and over again. A connection is defined by a pair of
 sockets. New instances of a connection will be referred to as
 incarnations of the connection. The problem that arises from this is
 -- "how does the TCP identify duplicate segments from previous
 incarnations of the connection?" This problem becomes apparent if the
 connection is being opened and closed in quick succession, or if the
 connection breaks with loss of memory and is then reestablished.

 To avoid confusion we must prevent segments from one incarnation of a
 connection from being used while the same sequence numbers may still
 be present in the network from an earlier incarnation. We want to
 assure this, even if a TCP crashes and loses all knowledge of the
 sequence numbers it has been using. When new connections are created,
 an initial sequence number (ISN) generator is employed which selects a
 new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
 bit clock whose low order bit is incremented roughly every 4
 microseconds. Thus, the ISN cycles approximately every 4.55 hours.
 Since we assume that segments will stay in the network no more than
 the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55
 hours we can reasonably assume that ISN’s will be unique.

 For each connection there is a send sequence number and a receive
 sequence number. The initial send sequence number (ISS) is chosen by
 the data sending TCP, and the initial receive sequence number (IRS) is
 learned during the connection establishing procedure.

 For a connection to be established or initialized, the two TCPs must
 synchronize on each other’s initial sequence numbers. This is done in
 an exchange of connection establishing segments carrying a control bit
 called "SYN" (for synchronize) and the initial sequence numbers. As a
 shorthand, segments carrying the SYN bit are also called "SYNs".
 Hence, the solution requires a suitable mechanism for picking an
 initial sequence number and a slightly involved handshake to exchange
 the ISN’s.

 The synchronization requires each side to send it’s own initial
 sequence number and to receive a confirmation of it in acknowledgment
 from the other side. Each side must also receive the other side’s
 initial sequence number and send a confirming acknowledgment.

 1) A --> B SYN my sequence number is X
 2) A <-- B ACK your sequence number is X
 3) A <-- B SYN my sequence number is Y
 4) A --> B ACK your sequence number is Y

 [Page 27]

 September 1981
Transmission Control Protocol
Functional Specification

 Because steps 2 and 3 can be combined in a single message this is
 called the three way (or three message) handshake.

 A three way handshake is necessary because sequence numbers are not
 tied to a global clock in the network, and TCPs may have different
 mechanisms for picking the ISN’s. The receiver of the first SYN has
 no way of knowing whether the segment was an old delayed one or not,
 unless it remembers the last sequence number used on the connection
 (which is not always possible), and so it must ask the sender to
 verify this SYN. The three way handshake and the advantages of a
 clock-driven scheme are discussed in [3].

 Knowing When to Keep Quiet

 To be sure that a TCP does not create a segment that carries a
 sequence number which may be duplicated by an old segment remaining in
 the network, the TCP must keep quiet for a maximum segment lifetime
 (MSL) before assigning any sequence numbers upon starting up or
 recovering from a crash in which memory of sequence numbers in use was
 lost. For this specification the MSL is taken to be 2 minutes. This
 is an engineering choice, and may be changed if experience indicates
 it is desirable to do so. Note that if a TCP is reinitialized in some
 sense, yet retains its memory of sequence numbers in use, then it need
 not wait at all; it must only be sure to use sequence numbers larger
 than those recently used.

 The TCP Quiet Time Concept

 This specification provides that hosts which "crash" without
 retaining any knowledge of the last sequence numbers transmitted on
 each active (i.e., not closed) connection shall delay emitting any
 TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
 in the internet system of which the host is a part. In the
 paragraphs below, an explanation for this specification is given.
 TCP implementors may violate the "quiet time" restriction, but only
 at the risk of causing some old data to be accepted as new or new
 data rejected as old duplicated by some receivers in the internet
 system.

 TCPs consume sequence number space each time a segment is formed and
 entered into the network output queue at a source host. The
 duplicate detection and sequencing algorithm in the TCP protocol
 relies on the unique binding of segment data to sequence space to
 the extent that sequence numbers will not cycle through all 2**32
 values before the segment data bound to those sequence numbers has
 been delivered and acknowledged by the receiver and all duplicate
 copies of the segments have "drained" from the internet. Without
 such an assumption, two distinct TCP segments could conceivably be

[Page 28]

September 1981
 Transmission Control Protocol
 Functional Specification

 assigned the same or overlapping sequence numbers, causing confusion
 at the receiver as to which data is new and which is old. Remember
 that each segment is bound to as many consecutive sequence numbers
 as there are octets of data in the segment.

 Under normal conditions, TCPs keep track of the next sequence number
 to emit and the oldest awaiting acknowledgment so as to avoid
 mistakenly using a sequence number over before its first use has
 been acknowledged. This alone does not guarantee that old duplicate
 data is drained from the net, so the sequence space has been made
 very large to reduce the probability that a wandering duplicate will
 cause trouble upon arrival. At 2 megabits/sec. it takes 4.5 hours
 to use up 2**32 octets of sequence space. Since the maximum segment
 lifetime in the net is not likely to exceed a few tens of seconds,
 this is deemed ample protection for foreseeable nets, even if data
 rates escalate to l0’s of megabits/sec. At 100 megabits/sec, the
 cycle time is 5.4 minutes which may be a little short, but still
 within reason.

 The basic duplicate detection and sequencing algorithm in TCP can be
 defeated, however, if a source TCP does not have any memory of the
 sequence numbers it last used on a given connection. For example, if
 the TCP were to start all connections with sequence number 0, then
 upon crashing and restarting, a TCP might re-form an earlier
 connection (possibly after half-open connection resolution) and emit
 packets with sequence numbers identical to or overlapping with
 packets still in the network which were emitted on an earlier
 incarnation of the same connection. In the absence of knowledge
 about the sequence numbers used on a particular connection, the TCP
 specification recommends that the source delay for MSL seconds
 before emitting segments on the connection, to allow time for
 segments from the earlier connection incarnation to drain from the
 system.

 Even hosts which can remember the time of day and used it to select
 initial sequence number values are not immune from this problem
 (i.e., even if time of day is used to select an initial sequence
 number for each new connection incarnation).

 Suppose, for example, that a connection is opened starting with
 sequence number S. Suppose that this connection is not used much
 and that eventually the initial sequence number function (ISN(t))
 takes on a value equal to the sequence number, say S1, of the last
 segment sent by this TCP on a particular connection. Now suppose,
 at this instant, the host crashes, recovers, and establishes a new
 incarnation of the connection. The initial sequence number chosen is
 S1 = ISN(t) -- last used sequence number on old incarnation of
 connection! If the recovery occurs quickly enough, any old

 [Page 29]

 September 1981
Transmission Control Protocol
Functional Specification

 duplicates in the net bearing sequence numbers in the neighborhood
 of S1 may arrive and be treated as new packets by the receiver of
 the new incarnation of the connection.

 The problem is that the recovering host may not know for how long it
 crashed nor does it know whether there are still old duplicates in
 the system from earlier connection incarnations.

 One way to deal with this problem is to deliberately delay emitting
 segments for one MSL after recovery from a crash- this is the "quite
 time" specification. Hosts which prefer to avoid waiting are
 willing to risk possible confusion of old and new packets at a given
 destination may choose not to wait for the "quite time".
 Implementors may provide TCP users with the ability to select on a
 connection by connection basis whether to wait after a crash, or may
 informally implement the "quite time" for all connections.
 Obviously, even where a user selects to "wait," this is not
 necessary after the host has been "up" for at least MSL seconds.

 To summarize: every segment emitted occupies one or more sequence
 numbers in the sequence space, the numbers occupied by a segment are
 "busy" or "in use" until MSL seconds have passed, upon crashing a
 block of space-time is occupied by the octets of the last emitted
 segment, if a new connection is started too soon and uses any of the
 sequence numbers in the space-time footprint of the last segment of
 the previous connection incarnation, there is a potential sequence
 number overlap area which could cause confusion at the receiver.

3.4. Establishing a connection

 The "three-way handshake" is the procedure used to establish a
 connection. This procedure normally is initiated by one TCP and
 responded to by another TCP. The procedure also works if two TCP
 simultaneously initiate the procedure. When simultaneous attempt
 occurs, each TCP receives a "SYN" segment which carries no
 acknowledgment after it has sent a "SYN". Of course, the arrival of
 an old duplicate "SYN" segment can potentially make it appear, to the
 recipient, that a simultaneous connection initiation is in progress.
 Proper use of "reset" segments can disambiguate these cases.

 Several examples of connection initiation follow. Although these
 examples do not show connection synchronization using data-carrying
 segments, this is perfectly legitimate, so long as the receiving TCP
 doesn’t deliver the data to the user until it is clear the data is
 valid (i.e., the data must be buffered at the receiver until the
 connection reaches the ESTABLISHED state). The three-way handshake
 reduces the possibility of false connections. It is the

[Page 30]

September 1981
 Transmission Control Protocol
 Functional Specification

 implementation of a trade-off between memory and messages to provide
 information for this checking.

 The simplest three-way handshake is shown in figure 7 below. The
 figures should be interpreted in the following way. Each line is
 numbered for reference purposes. Right arrows (-->) indicate
 departure of a TCP segment from TCP A to TCP B, or arrival of a
 segment at B from A. Left arrows (<--), indicate the reverse.
 Ellipsis (...) indicates a segment which is still in the network
 (delayed). An "XXX" indicates a segment which is lost or rejected.
 Comments appear in parentheses. TCP states represent the state AFTER
 the departure or arrival of the segment (whose contents are shown in
 the center of each line). Segment contents are shown in abbreviated
 form, with sequence number, control flags, and ACK field. Other
 fields such as window, addresses, lengths, and text have been left out
 in the interest of clarity.

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

 Basic 3-Way Handshake for Connection Synchronization

 Figure 7.

 In line 2 of figure 7, TCP A begins by sending a SYN segment
 indicating that it will use sequence numbers starting with sequence
 number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it
 received from TCP A. Note that the acknowledgment field indicates TCP
 B is now expecting to hear sequence 101, acknowledging the SYN which
 occupied sequence 100.

 At line 4, TCP A responds with an empty segment containing an ACK for
 TCP B’s SYN; and in line 5, TCP A sends some data. Note that the
 sequence number of the segment in line 5 is the same as in line 4
 because the ACK does not occupy sequence number space (if it did, we
 would wind up ACKing ACK’s!).

 [Page 31]

 September 1981
Transmission Control Protocol
Functional Specification

 Simultaneous initiation is only slightly more complex, as is shown in
 figure 8. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
 ESTABLISHED.

 TCP A TCP B

 1. CLOSED CLOSED

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

 4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

 6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 7. ... <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 Simultaneous Connection Synchronization

 Figure 8.

 The principle reason for the three-way handshake is to prevent old
 duplicate connection initiations from causing confusion. To deal with
 this, a special control message, reset, has been devised. If the
 receiving TCP is in a non-synchronized state (i.e., SYN-SENT,
 SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
 If the TCP is in one of the synchronized states (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
 aborts the connection and informs its user. We discuss this latter
 case under "half-open" connections below.

[Page 32]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

 3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-RECEIVED

 4. SYN-SENT <-- <SEQ=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

 5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

 6. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 7. SYN-SENT <-- <SEQ=400><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 8. ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLISHED

 Recovery from Old Duplicate SYN

 Figure 9.

 As a simple example of recovery from old duplicates, consider
 figure 9. At line 3, an old duplicate SYN arrives at TCP B. TCP B
 cannot tell that this is an old duplicate, so it responds normally
 (line 4). TCP A detects that the ACK field is incorrect and returns a
 RST (reset) with its SEQ field selected to make the segment
 believable. TCP B, on receiving the RST, returns to the LISTEN state.
 When the original SYN (pun intended) finally arrives at line 6, the
 synchronization proceeds normally. If the SYN at line 6 had arrived
 before the RST, a more complex exchange might have occurred with RST’s
 sent in both directions.

 Half-Open Connections and Other Anomalies

 An established connection is said to be "half-open" if one of the
 TCPs has closed or aborted the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a crash that resulted in loss of
 memory. Such connections will automatically become reset if an
 attempt is made to send data in either direction. However, half-open
 connections are expected to be unusual, and the recovery procedure is
 mildly involved.

 If at site A the connection no longer exists, then an attempt by the

 [Page 33]

 September 1981
Transmission Control Protocol
Functional Specification

 user at site B to send any data on it will result in the site B TCP
 receiving a reset control message. Such a message indicates to the
 site B TCP that something is wrong, and it is expected to abort the
 connection.

 Assume that two user processes A and B are communicating with one
 another when a crash occurs causing loss of memory to A’s TCP.
 Depending on the operating system supporting A’s TCP, it is likely
 that some error recovery mechanism exists. When the TCP is up again,
 A is likely to start again from the beginning or from a recovery
 point. As a result, A will probably try to OPEN the connection again
 or try to SEND on the connection it believes open. In the latter
 case, it receives the error message "connection not open" from the
 local (A’s) TCP. In an attempt to establish the connection, A’s TCP
 will send a segment containing SYN. This scenario leads to the
 example shown in figure 10. After TCP A crashes, the user attempts to
 re-open the connection. TCP B, in the meantime, thinks the connection
 is open.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. CLOSED ESTABLISHED

 3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (??)

 4. (!!) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLISHED

 5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

 6. SYN-SENT CLOSED

 7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

 Half-Open Connection Discovery

 Figure 10.

 When the SYN arrives at line 3, TCP B, being in a synchronized state,
 and the incoming segment outside the window, responds with an
 acknowledgment indicating what sequence it next expects to hear (ACK
 100). TCP A sees that this segment does not acknowledge anything it
 sent and, being unsynchronized, sends a reset (RST) because it has
 detected a half-open connection. TCP B aborts at line 5. TCP A will

[Page 34]

September 1981
 Transmission Control Protocol
 Functional Specification

 continue to try to establish the connection; the problem is now
 reduced to the basic 3-way handshake of figure 7.

 An interesting alternative case occurs when TCP A crashes and TCP B
 tries to send data on what it thinks is a synchronized connection.
 This is illustrated in figure 11. In this case, the data arriving at
 TCP A from TCP B (line 2) is unacceptable because no such connection
 exists, so TCP A sends a RST. The RST is acceptable so TCP B
 processes it and aborts the connection.

 TCP A TCP B

 1. (CRASH) (send 300,receive 100)

 2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

 3. --> <SEQ=100><CTL=RST> --> (ABORT!!)

 Active Side Causes Half-Open Connection Discovery

 Figure 11.

 In figure 12, we find the two TCPs A and B with passive connections
 waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
 into action. A SYN-ACK is returned (line 3) and causes TCP A to
 generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
 the reset and returns to its passive LISTEN state.

 TCP A TCP B

 1. LISTEN LISTEN

 2. ... <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

 3. (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN!)

 5. LISTEN LISTEN

 Old Duplicate SYN Initiates a Reset on two Passive Sockets

 Figure 12.

 [Page 35]

 September 1981
Transmission Control Protocol
Functional Specification

 A variety of other cases are possible, all of which are accounted for
 by the following rules for RST generation and processing.

 Reset Generation

 As a general rule, reset (RST) must be sent whenever a segment arrives
 which apparently is not intended for the current connection. A reset
 must not be sent if it is not clear that this is the case.

 There are three groups of states:

 1. If the connection does not exist (CLOSED) then a reset is sent
 in response to any incoming segment except another reset. In
 particular, SYNs addressed to a non-existent connection are rejected
 by this means.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the CLOSED state.

 2. If the connection is in any non-synchronized state (LISTEN,
 SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
 something not yet sent (the segment carries an unacceptable ACK), or
 if an incoming segment has a security level or compartment which
 does not exactly match the level and compartment requested for the
 connection, a reset is sent.

 If our SYN has not been acknowledged and the precedence level of the
 incoming segment is higher than the precedence level requested then
 either raise the local precedence level (if allowed by the user and
 the system) or send a reset; or if the precedence level of the
 incoming segment is lower than the precedence level requested then
 continue as if the precedence matched exactly (if the remote TCP
 cannot raise the precedence level to match ours this will be
 detected in the next segment it sends, and the connection will be
 terminated then). If our SYN has been acknowledged (perhaps in this
 incoming segment) the precedence level of the incoming segment must
 match the local precedence level exactly, if it does not a reset
 must be sent.

 If the incoming segment has an ACK field, the reset takes its
 sequence number from the ACK field of the segment, otherwise the
 reset has sequence number zero and the ACK field is set to the sum
 of the sequence number and segment length of the incoming segment.
 The connection remains in the same state.

[Page 36]

September 1981
 Transmission Control Protocol
 Functional Specification

 3. If the connection is in a synchronized state (ESTABLISHED,
 FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
 any unacceptable segment (out of window sequence number or
 unacceptible acknowledgment number) must elicit only an empty
 acknowledgment segment containing the current send-sequence number
 and an acknowledgment indicating the next sequence number expected
 to be received, and the connection remains in the same state.

 If an incoming segment has a security level, or compartment, or
 precedence which does not exactly match the level, and compartment,
 and precedence requested for the connection,a reset is sent and
 connection goes to the CLOSED state. The reset takes its sequence
 number from the ACK field of the incoming segment.

 Reset Processing

 In all states except SYN-SENT, all reset (RST) segments are validated
 by checking their SEQ-fields. A reset is valid if its sequence number
 is in the window. In the SYN-SENT state (a RST received in response
 to an initial SYN), the RST is acceptable if the ACK field
 acknowledges the SYN.

 The receiver of a RST first validates it, then changes state. If the
 receiver was in the LISTEN state, it ignores it. If the receiver was
 in SYN-RECEIVED state and had previously been in the LISTEN state,
 then the receiver returns to the LISTEN state, otherwise the receiver
 aborts the connection and goes to the CLOSED state. If the receiver
 was in any other state, it aborts the connection and advises the user
 and goes to the CLOSED state.

3.5. Closing a Connection

 CLOSE is an operation meaning "I have no more data to send." The
 notion of closing a full-duplex connection is subject to ambiguous
 interpretation, of course, since it may not be obvious how to treat
 the receiving side of the connection. We have chosen to treat CLOSE
 in a simplex fashion. The user who CLOSEs may continue to RECEIVE
 until he is told that the other side has CLOSED also. Thus, a program
 could initiate several SENDs followed by a CLOSE, and then continue to
 RECEIVE until signaled that a RECEIVE failed because the other side
 has CLOSED. We assume that the TCP will signal a user, even if no
 RECEIVEs are outstanding, that the other side has closed, so the user
 can terminate his side gracefully. A TCP will reliably deliver all
 buffers SENT before the connection was CLOSED so a user who expects no
 data in return need only wait to hear the connection was CLOSED
 successfully to know that all his data was received at the destination
 TCP. Users must keep reading connections they close for sending until
 the TCP says no more data.

 [Page 37]

 September 1981
Transmission Control Protocol
Functional Specification

 There are essentially three cases:

 1) The user initiates by telling the TCP to CLOSE the connection

 2) The remote TCP initiates by sending a FIN control signal

 3) Both users CLOSE simultaneously

 Case 1: Local user initiates the close

 In this case, a FIN segment can be constructed and placed on the
 outgoing segment queue. No further SENDs from the user will be
 accepted by the TCP, and it enters the FIN-WAIT-1 state. RECEIVEs
 are allowed in this state. All segments preceding and including FIN
 will be retransmitted until acknowledged. When the other TCP has
 both acknowledged the FIN and sent a FIN of its own, the first TCP
 can ACK this FIN. Note that a TCP receiving a FIN will ACK but not
 send its own FIN until its user has CLOSED the connection also.

 Case 2: TCP receives a FIN from the network

 If an unsolicited FIN arrives from the network, the receiving TCP
 can ACK it and tell the user that the connection is closing. The
 user will respond with a CLOSE, upon which the TCP can send a FIN to
 the other TCP after sending any remaining data. The TCP then waits
 until its own FIN is acknowledged whereupon it deletes the
 connection. If an ACK is not forthcoming, after the user timeout
 the connection is aborted and the user is told.

 Case 3: both users close simultaneously

 A simultaneous CLOSE by users at both ends of a connection causes
 FIN segments to be exchanged. When all segments preceding the FINs
 have been processed and acknowledged, each TCP can ACK the FIN it
 has received. Both will, upon receiving these ACKs, delete the
 connection.

[Page 38]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

 3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK> <-- CLOSE-WAIT

 4. (Close)
 TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

 5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK> --> CLOSED

 6. (2 MSL)
 CLOSED

 Normal Close Sequence

 Figure 13.

 TCP A TCP B

 1. ESTABLISHED ESTABLISHED

 2. (Close) (Close)
 FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> ... FIN-WAIT-1
 <-- <SEQ=300><ACK=100><CTL=FIN,ACK> <--
 ... <SEQ=100><ACK=300><CTL=FIN,ACK> -->

 3. CLOSING --> <SEQ=101><ACK=301><CTL=ACK> ... CLOSING
 <-- <SEQ=301><ACK=101><CTL=ACK> <--
 ... <SEQ=101><ACK=301><CTL=ACK> -->

 4. TIME-WAIT TIME-WAIT
 (2 MSL) (2 MSL)
 CLOSED CLOSED

 Simultaneous Close Sequence

 Figure 14.

 [Page 39]

 September 1981
Transmission Control Protocol
Functional Specification

3.6. Precedence and Security

 The intent is that connection be allowed only between ports operating
 with exactly the same security and compartment values and at the
 higher of the precedence level requested by the two ports.

 The precedence and security parameters used in TCP are exactly those
 defined in the Internet Protocol (IP) [2]. Throughout this TCP
 specification the term "security/compartment" is intended to indicate
 the security parameters used in IP including security, compartment,
 user group, and handling restriction.

 A connection attempt with mismatched security/compartment values or a
 lower precedence value must be rejected by sending a reset. Rejecting
 a connection due to too low a precedence only occurs after an
 acknowledgment of the SYN has been received.

 Note that TCP modules which operate only at the default value of
 precedence will still have to check the precedence of incoming
 segments and possibly raise the precedence level they use on the
 connection.

 The security paramaters may be used even in a non-secure environment
 (the values would indicate unclassified data), thus hosts in
 non-secure environments must be prepared to receive the security
 parameters, though they need not send them.

3.7. Data Communication

 Once the connection is established data is communicated by the
 exchange of segments. Because segments may be lost due to errors
 (checksum test failure), or network congestion, TCP uses
 retransmission (after a timeout) to ensure delivery of every segment.
 Duplicate segments may arrive due to network or TCP retransmission.
 As discussed in the section on sequence numbers the TCP performs
 certain tests on the sequence and acknowledgment numbers in the
 segments to verify their acceptability.

 The sender of data keeps track of the next sequence number to use in
 the variable SND.NXT. The receiver of data keeps track of the next
 sequence number to expect in the variable RCV.NXT. The sender of data
 keeps track of the oldest unacknowledged sequence number in the
 variable SND.UNA. If the data flow is momentarily idle and all data
 sent has been acknowledged then the three variables will be equal.

 When the sender creates a segment and transmits it the sender advances
 SND.NXT. When the receiver accepts a segment it advances RCV.NXT and
 sends an acknowledgment. When the data sender receives an

[Page 40]

September 1981
 Transmission Control Protocol
 Functional Specification

 acknowledgment it advances SND.UNA. The extent to which the values of
 these variables differ is a measure of the delay in the communication.
 The amount by which the variables are advanced is the length of the
 data in the segment. Note that once in the ESTABLISHED state all
 segments must carry current acknowledgment information.

 The CLOSE user call implies a push function, as does the FIN control
 flag in an incoming segment.

 Retransmission Timeout

 Because of the variability of the networks that compose an
 internetwork system and the wide range of uses of TCP connections the
 retransmission timeout must be dynamically determined. One procedure
 for determining a retransmission time out is given here as an
 illustration.

 An Example Retransmission Timeout Procedure

 Measure the elapsed time between sending a data octet with a
 particular sequence number and receiving an acknowledgment that
 covers that sequence number (segments sent do not have to match
 segments received). This measured elapsed time is the Round Trip
 Time (RTT). Next compute a Smoothed Round Trip Time (SRTT) as:

 SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)

 and based on this, compute the retransmission timeout (RTO) as:

 RTO = min[UBOUND,max[LBOUND,(BETA*SRTT)]]

 where UBOUND is an upper bound on the timeout (e.g., 1 minute),
 LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
 a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
 factor (e.g., 1.3 to 2.0).

 The Communication of Urgent Information

 The objective of the TCP urgent mechanism is to allow the sending user
 to stimulate the receiving user to accept some urgent data and to
 permit the receiving TCP to indicate to the receiving user when all
 the currently known urgent data has been received by the user.

 This mechanism permits a point in the data stream to be designated as
 the end of urgent information. Whenever this point is in advance of
 the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
 must tell the user to go into "urgent mode"; when the receive sequence
 number catches up to the urgent pointer, the TCP must tell user to go

 [Page 41]

 September 1981
Transmission Control Protocol
Functional Specification

 into "normal mode". If the urgent pointer is updated while the user
 is in "urgent mode", the update will be invisible to the user.

 The method employs a urgent field which is carried in all segments
 transmitted. The URG control flag indicates that the urgent field is
 meaningful and must be added to the segment sequence number to yield
 the urgent pointer. The absence of this flag indicates that there is
 no urgent data outstanding.

 To send an urgent indication the user must also send at least one data
 octet. If the sending user also indicates a push, timely delivery of
 the urgent information to the destination process is enhanced.

 Managing the Window

 The window sent in each segment indicates the range of sequence
 numbers the sender of the window (the data receiver) is currently
 prepared to accept. There is an assumption that this is related to
 the currently available data buffer space available for this
 connection.

 Indicating a large window encourages transmissions. If more data
 arrives than can be accepted, it will be discarded. This will result
 in excessive retransmissions, adding unnecessarily to the load on the
 network and the TCPs. Indicating a small window may restrict the
 transmission of data to the point of introducing a round trip delay
 between each new segment transmitted.

 The mechanisms provided allow a TCP to advertise a large window and to
 subsequently advertise a much smaller window without having accepted
 that much data. This, so called "shrinking the window," is strongly
 discouraged. The robustness principle dictates that TCPs will not
 shrink the window themselves, but will be prepared for such behavior
 on the part of other TCPs.

 The sending TCP must be prepared to accept from the user and send at
 least one octet of new data even if the send window is zero. The
 sending TCP must regularly retransmit to the receiving TCP even when
 the window is zero. Two minutes is recommended for the retransmission
 interval when the window is zero. This retransmission is essential to
 guarantee that when either TCP has a zero window the re-opening of the
 window will be reliably reported to the other.

 When the receiving TCP has a zero window and a segment arrives it must
 still send an acknowledgment showing its next expected sequence number
 and current window (zero).

 The sending TCP packages the data to be transmitted into segments

[Page 42]

September 1981
 Transmission Control Protocol
 Functional Specification

 which fit the current window, and may repackage segments on the
 retransmission queue. Such repackaging is not required, but may be
 helpful.

 In a connection with a one-way data flow, the window information will
 be carried in acknowledgment segments that all have the same sequence
 number so there will be no way to reorder them if they arrive out of
 order. This is not a serious problem, but it will allow the window
 information to be on occasion temporarily based on old reports from
 the data receiver. A refinement to avoid this problem is to act on
 the window information from segments that carry the highest
 acknowledgment number (that is segments with acknowledgment number
 equal or greater than the highest previously received).

 The window management procedure has significant influence on the
 communication performance. The following comments are suggestions to
 implementers.

 Window Management Suggestions

 Allocating a very small window causes data to be transmitted in
 many small segments when better performance is achieved using
 fewer large segments.

 One suggestion for avoiding small windows is for the receiver to
 defer updating a window until the additional allocation is at
 least X percent of the maximum allocation possible for the
 connection (where X might be 20 to 40).

 Another suggestion is for the sender to avoid sending small
 segments by waiting until the window is large enough before
 sending data. If the the user signals a push function then the
 data must be sent even if it is a small segment.

 Note that the acknowledgments should not be delayed or unnecessary
 retransmissions will result. One strategy would be to send an
 acknowledgment when a small segment arrives (with out updating the
 window information), and then to send another acknowledgment with
 new window information when the window is larger.

 The segment sent to probe a zero window may also begin a break up
 of transmitted data into smaller and smaller segments. If a
 segment containing a single data octet sent to probe a zero window
 is accepted, it consumes one octet of the window now available.
 If the sending TCP simply sends as much as it can whenever the
 window is non zero, the transmitted data will be broken into
 alternating big and small segments. As time goes on, occasional
 pauses in the receiver making window allocation available will

 [Page 43]

 September 1981
Transmission Control Protocol
Functional Specification

 result in breaking the big segments into a small and not quite so
 big pair. And after a while the data transmission will be in
 mostly small segments.

 The suggestion here is that the TCP implementations need to
 actively attempt to combine small window allocations into larger
 windows, since the mechanisms for managing the window tend to lead
 to many small windows in the simplest minded implementations.

3.8. Interfaces

 There are of course two interfaces of concern: the user/TCP interface
 and the TCP/lower-level interface. We have a fairly elaborate model
 of the user/TCP interface, but the interface to the lower level
 protocol module is left unspecified here, since it will be specified
 in detail by the specification of the lowel level protocol. For the
 case that the lower level is IP we note some of the parameter values
 that TCPs might use.

 User/TCP Interface

 The following functional description of user commands to the TCP is,
 at best, fictional, since every operating system will have different
 facilities. Consequently, we must warn readers that different TCP
 implementations may have different user interfaces. However, all
 TCPs must provide a certain minimum set of services to guarantee
 that all TCP implementations can support the same protocol
 hierarchy. This section specifies the functional interfaces
 required of all TCP implementations.

 TCP User Commands

 The following sections functionally characterize a USER/TCP
 interface. The notation used is similar to most procedure or
 function calls in high level languages, but this usage is not
 meant to rule out trap type service calls (e.g., SVCs, UUOs,
 EMTs).

 The user commands described below specify the basic functions the
 TCP must perform to support interprocess communication.
 Individual implementations must define their own exact format, and
 may provide combinations or subsets of the basic functions in
 single calls. In particular, some implementations may wish to
 automatically OPEN a connection on the first SEND or RECEIVE
 issued by the user for a given connection.

[Page 44]

September 1981
 Transmission Control Protocol
 Functional Specification

 In providing interprocess communication facilities, the TCP must
 not only accept commands, but must also return information to the
 processes it serves. The latter consists of:

 (a) general information about a connection (e.g., interrupts,
 remote close, binding of unspecified foreign socket).

 (b) replies to specific user commands indicating success or
 various types of failure.

 Open

 Format: OPEN (local port, foreign socket, active/passive
 [, timeout] [, precedence] [, security/compartment] [, options])
 -> local connection name

 We assume that the local TCP is aware of the identity of the
 processes it serves and will check the authority of the process
 to use the connection specified. Depending upon the
 implementation of the TCP, the local network and TCP identifiers
 for the source address will either be supplied by the TCP or the
 lower level protocol (e.g., IP). These considerations are the
 result of concern about security, to the extent that no TCP be
 able to masquerade as another one, and so on. Similarly, no
 process can masquerade as another without the collusion of the
 TCP.

 If the active/passive flag is set to passive, then this is a
 call to LISTEN for an incoming connection. A passive open may
 have either a fully specified foreign socket to wait for a
 particular connection or an unspecified foreign socket to wait
 for any call. A fully specified passive call can be made active
 by the subsequent execution of a SEND.

 A transmission control block (TCB) is created and partially
 filled in with data from the OPEN command parameters.

 On an active OPEN command, the TCP will begin the procedure to
 synchronize (i.e., establish) the connection at once.

 The timeout, if present, permits the caller to set up a timeout
 for all data submitted to TCP. If data is not successfully
 delivered to the destination within the timeout period, the TCP
 will abort the connection. The present global default is five
 minutes.

 The TCP or some component of the operating system will verify
 the users authority to open a connection with the specified

 [Page 45]

 September 1981
Transmission Control Protocol
Functional Specification

 precedence or security/compartment. The absence of precedence
 or security/compartment specification in the OPEN call indicates
 the default values must be used.

 TCP will accept incoming requests as matching only if the
 security/compartment information is exactly the same and only if
 the precedence is equal to or higher than the precedence
 requested in the OPEN call.

 The precedence for the connection is the higher of the values
 requested in the OPEN call and received from the incoming
 request, and fixed at that value for the life of the
 connection.Implementers may want to give the user control of
 this precedence negotiation. For example, the user might be
 allowed to specify that the precedence must be exactly matched,
 or that any attempt to raise the precedence be confirmed by the
 user.

 A local connection name will be returned to the user by the TCP.
 The local connection name can then be used as a short hand term
 for the connection defined by the <local socket, foreign socket>
 pair.

 Send

 Format: SEND (local connection name, buffer address, byte
 count, PUSH flag, URGENT flag [,timeout])

 This call causes the data contained in the indicated user buffer
 to be sent on the indicated connection. If the connection has
 not been opened, the SEND is considered an error. Some
 implementations may allow users to SEND first; in which case, an
 automatic OPEN would be done. If the calling process is not
 authorized to use this connection, an error is returned.

 If the PUSH flag is set, the data must be transmitted promptly
 to the receiver, and the PUSH bit will be set in the last TCP
 segment created from the buffer. If the PUSH flag is not set,
 the data may be combined with data from subsequent SENDs for
 transmission efficiency.

 If the URGENT flag is set, segments sent to the destination TCP
 will have the urgent pointer set. The receiving TCP will signal
 the urgent condition to the receiving process if the urgent
 pointer indicates that data preceding the urgent pointer has not
 been consumed by the receiving process. The purpose of urgent
 is to stimulate the receiver to process the urgent data and to
 indicate to the receiver when all the currently known urgent

[Page 46]

September 1981
 Transmission Control Protocol
 Functional Specification

 data has been received. The number of times the sending user’s
 TCP signals urgent will not necessarily be equal to the number
 of times the receiving user will be notified of the presence of
 urgent data.

 If no foreign socket was specified in the OPEN, but the
 connection is established (e.g., because a LISTENing connection
 has become specific due to a foreign segment arriving for the
 local socket), then the designated buffer is sent to the implied
 foreign socket. Users who make use of OPEN with an unspecified
 foreign socket can make use of SEND without ever explicitly
 knowing the foreign socket address.

 However, if a SEND is attempted before the foreign socket
 becomes specified, an error will be returned. Users can use the
 STATUS call to determine the status of the connection. In some
 implementations the TCP may notify the user when an unspecified
 socket is bound.

 If a timeout is specified, the current user timeout for this
 connection is changed to the new one.

 In the simplest implementation, SEND would not return control to
 the sending process until either the transmission was complete
 or the timeout had been exceeded. However, this simple method
 is both subject to deadlocks (for example, both sides of the
 connection might try to do SENDs before doing any RECEIVEs) and
 offers poor performance, so it is not recommended. A more
 sophisticated implementation would return immediately to allow
 the process to run concurrently with network I/O, and,
 furthermore, to allow multiple SENDs to be in progress.
 Multiple SENDs are served in first come, first served order, so
 the TCP will queue those it cannot service immediately.

 We have implicitly assumed an asynchronous user interface in
 which a SEND later elicits some kind of SIGNAL or
 pseudo-interrupt from the serving TCP. An alternative is to
 return a response immediately. For instance, SENDs might return
 immediate local acknowledgment, even if the segment sent had not
 been acknowledged by the distant TCP. We could optimistically
 assume eventual success. If we are wrong, the connection will
 close anyway due to the timeout. In implementations of this
 kind (synchronous), there will still be some asynchronous
 signals, but these will deal with the connection itself, and not
 with specific segments or buffers.

 In order for the process to distinguish among error or success
 indications for different SENDs, it might be appropriate for the

 [Page 47]

 September 1981
Transmission Control Protocol
Functional Specification

 buffer address to be returned along with the coded response to
 the SEND request. TCP-to-user signals are discussed below,
 indicating the information which should be returned to the
 calling process.

 Receive

 Format: RECEIVE (local connection name, buffer address, byte
 count) -> byte count, urgent flag, push flag

 This command allocates a receiving buffer associated with the
 specified connection. If no OPEN precedes this command or the
 calling process is not authorized to use this connection, an
 error is returned.

 In the simplest implementation, control would not return to the
 calling program until either the buffer was filled, or some
 error occurred, but this scheme is highly subject to deadlocks.
 A more sophisticated implementation would permit several
 RECEIVEs to be outstanding at once. These would be filled as
 segments arrive. This strategy permits increased throughput at
 the cost of a more elaborate scheme (possibly asynchronous) to
 notify the calling program that a PUSH has been seen or a buffer
 filled.

 If enough data arrive to fill the buffer before a PUSH is seen,
 the PUSH flag will not be set in the response to the RECEIVE.
 The buffer will be filled with as much data as it can hold. If
 a PUSH is seen before the buffer is filled the buffer will be
 returned partially filled and PUSH indicated.

 If there is urgent data the user will have been informed as soon
 as it arrived via a TCP-to-user signal. The receiving user
 should thus be in "urgent mode". If the URGENT flag is on,
 additional urgent data remains. If the URGENT flag is off, this
 call to RECEIVE has returned all the urgent data, and the user
 may now leave "urgent mode". Note that data following the
 urgent pointer (non-urgent data) cannot be delivered to the user
 in the same buffer with preceeding urgent data unless the
 boundary is clearly marked for the user.

 To distinguish among several outstanding RECEIVEs and to take
 care of the case that a buffer is not completely filled, the
 return code is accompanied by both a buffer pointer and a byte
 count indicating the actual length of the data received.

 Alternative implementations of RECEIVE might have the TCP

[Page 48]

September 1981
 Transmission Control Protocol
 Functional Specification

 allocate buffer storage, or the TCP might share a ring buffer
 with the user.

 Close

 Format: CLOSE (local connection name)

 This command causes the connection specified to be closed. If
 the connection is not open or the calling process is not
 authorized to use this connection, an error is returned.
 Closing connections is intended to be a graceful operation in
 the sense that outstanding SENDs will be transmitted (and
 retransmitted), as flow control permits, until all have been
 serviced. Thus, it should be acceptable to make several SEND
 calls, followed by a CLOSE, and expect all the data to be sent
 to the destination. It should also be clear that users should
 continue to RECEIVE on CLOSING connections, since the other side
 may be trying to transmit the last of its data. Thus, CLOSE
 means "I have no more to send" but does not mean "I will not
 receive any more." It may happen (if the user level protocol is
 not well thought out) that the closing side is unable to get rid
 of all its data before timing out. In this event, CLOSE turns
 into ABORT, and the closing TCP gives up.

 The user may CLOSE the connection at any time on his own
 initiative, or in response to various prompts from the TCP
 (e.g., remote close executed, transmission timeout exceeded,
 destination inaccessible).

 Because closing a connection requires communication with the
 foreign TCP, connections may remain in the closing state for a
 short time. Attempts to reopen the connection before the TCP
 replies to the CLOSE command will result in error responses.

 Close also implies push function.

 Status

 Format: STATUS (local connection name) -> status data

 This is an implementation dependent user command and could be
 excluded without adverse effect. Information returned would
 typically come from the TCB associated with the connection.

 This command returns a data block containing the following
 information:

 local socket,

 [Page 49]

 September 1981
Transmission Control Protocol
Functional Specification

 foreign socket,
 local connection name,
 receive window,
 send window,
 connection state,
 number of buffers awaiting acknowledgment,
 number of buffers pending receipt,
 urgent state,
 precedence,
 security/compartment,
 and transmission timeout.

 Depending on the state of the connection, or on the
 implementation itself, some of this information may not be
 available or meaningful. If the calling process is not
 authorized to use this connection, an error is returned. This
 prevents unauthorized processes from gaining information about a
 connection.

 Abort

 Format: ABORT (local connection name)

 This command causes all pending SENDs and RECEIVES to be
 aborted, the TCB to be removed, and a special RESET message to
 be sent to the TCP on the other side of the connection.
 Depending on the implementation, users may receive abort
 indications for each outstanding SEND or RECEIVE, or may simply
 receive an ABORT-acknowledgment.

 TCP-to-User Messages

 It is assumed that the operating system environment provides a
 means for the TCP to asynchronously signal the user program. When
 the TCP does signal a user program, certain information is passed
 to the user. Often in the specification the information will be
 an error message. In other cases there will be information
 relating to the completion of processing a SEND or RECEIVE or
 other user call.

 The following information is provided:

 Local Connection Name Always
 Response String Always
 Buffer Address Send & Receive
 Byte count (counts bytes received) Receive
 Push flag Receive
 Urgent flag Receive

[Page 50]

September 1981
 Transmission Control Protocol
 Functional Specification

 TCP/Lower-Level Interface

 The TCP calls on a lower level protocol module to actually send and
 receive information over a network. One case is that of the ARPA
 internetwork system where the lower level module is the Internet
 Protocol (IP) [2].

 If the lower level protocol is IP it provides arguments for a type
 of service and for a time to live. TCP uses the following settings
 for these parameters:

 Type of Service = Precedence: routine, Delay: normal, Throughput:
 normal, Reliability: normal; or 00000000.

 Time to Live = one minute, or 00111100.

 Note that the assumed maximum segment lifetime is two minutes.
 Here we explicitly ask that a segment be destroyed if it cannot
 be delivered by the internet system within one minute.

 If the lower level is IP (or other protocol that provides this
 feature) and source routing is used, the interface must allow the
 route information to be communicated. This is especially important
 so that the source and destination addresses used in the TCP
 checksum be the originating source and ultimate destination. It is
 also important to preserve the return route to answer connection
 requests.

 Any lower level protocol will have to provide the source address,
 destination address, and protocol fields, and some way to determine
 the "TCP length", both to provide the functional equivlent service
 of IP and to be used in the TCP checksum.

 [Page 51]

 September 1981
Transmission Control Protocol
Functional Specification

3.9. Event Processing

 The processing depicted in this section is an example of one possible
 implementation. Other implementations may have slightly different
 processing sequences, but they should differ from those in this
 section only in detail, not in substance.

 The activity of the TCP can be characterized as responding to events.
 The events that occur can be cast into three categories: user calls,
 arriving segments, and timeouts. This section describes the
 processing the TCP does in response to each of the events. In many
 cases the processing required depends on the state of the connection.

 Events that occur:

 User Calls

 OPEN
 SEND
 RECEIVE
 CLOSE
 ABORT
 STATUS

 Arriving Segments

 SEGMENT ARRIVES

 Timeouts

 USER TIMEOUT
 RETRANSMISSION TIMEOUT
 TIME-WAIT TIMEOUT

 The model of the TCP/user interface is that user commands receive an
 immediate return and possibly a delayed response via an event or
 pseudo interrupt. In the following descriptions, the term "signal"
 means cause a delayed response.

 Error responses are given as character strings. For example, user
 commands referencing connections that do not exist receive "error:
 connection not open".

 Please note in the following that all arithmetic on sequence numbers,
 acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
 of the sequence number space. Also note that "=<" means less than or
 equal to (modulo 2**32).

[Page 52]

September 1981
 Transmission Control Protocol
 Functional Specification

 A natural way to think about processing incoming segments is to
 imagine that they are first tested for proper sequence number (i.e.,
 that their contents lie in the range of the expected "receive window"
 in the sequence number space) and then that they are generally queued
 and processed in sequence number order.

 When a segment overlaps other already received segments we reconstruct
 the segment to contain just the new data, and adjust the header fields
 to be consistent.

 Note that if no state change is mentioned the TCP stays in the same
 state.

 [Page 53]

 September 1981
Transmission Control Protocol
Functional Specification
 OPEN Call

 OPEN Call

 CLOSED STATE (i.e., TCB does not exist)

 Create a new transmission control block (TCB) to hold connection
 state information. Fill in local socket identifier, foreign
 socket, precedence, security/compartment, and user timeout
 information. Note that some parts of the foreign socket may be
 unspecified in a passive OPEN and are to be filled in by the
 parameters of the incoming SYN segment. Verify the security and
 precedence requested are allowed for this user, if not return
 "error: precedence not allowed" or "error: security/compartment
 not allowed." If passive enter the LISTEN state and return. If
 active and the foreign socket is unspecified, return "error:
 foreign socket unspecified"; if active and the foreign socket is
 specified, issue a SYN segment. An initial send sequence number
 (ISS) is selected. A SYN segment of the form <SEQ=ISS><CTL=SYN>
 is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
 state, and return.

 If the caller does not have access to the local socket specified,
 return "error: connection illegal for this process". If there is
 no room to create a new connection, return "error: insufficient
 resources".

 LISTEN STATE

 If active and the foreign socket is specified, then change the
 connection from passive to active, select an ISS. Send a SYN
 segment, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
 state. Data associated with SEND may be sent with SYN segment or
 queued for transmission after entering ESTABLISHED state. The
 urgent bit if requested in the command must be sent with the data
 segments sent as a result of this command. If there is no room to
 queue the request, respond with "error: insufficient resources".
 If Foreign socket was not specified, then return "error: foreign
 socket unspecified".

[Page 54]

September 1981
 Transmission Control Protocol
 Functional Specification
OPEN Call

 SYN-SENT STATE
 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection already exists".

 [Page 55]

 September 1981
Transmission Control Protocol
Functional Specification
 SEND Call

 SEND Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, then return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 If the foreign socket is specified, then change the connection
 from passive to active, select an ISS. Send a SYN segment, set
 SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
 associated with SEND may be sent with SYN segment or queued for
 transmission after entering ESTABLISHED state. The urgent bit if
 requested in the command must be sent with the data segments sent
 as a result of this command. If there is no room to queue the
 request, respond with "error: insufficient resources". If
 Foreign socket was not specified, then return "error: foreign
 socket unspecified".

 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue the data for transmission after entering ESTABLISHED state.
 If no space to queue, respond with "error: insufficient
 resources".

 ESTABLISHED STATE
 CLOSE-WAIT STATE

 Segmentize the buffer and send it with a piggybacked
 acknowledgment (acknowledgment value = RCV.NXT). If there is
 insufficient space to remember this buffer, simply return "error:
 insufficient resources".

 If the urgent flag is set, then SND.UP <- SND.NXT-1 and set the
 urgent pointer in the outgoing segments.

[Page 56]

September 1981
 Transmission Control Protocol
 Functional Specification
SEND Call

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing" and do not service request.

 [Page 57]

 September 1981
Transmission Control Protocol
Functional Specification
 RECEIVE Call

 RECEIVE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE
 SYN-SENT STATE
 SYN-RECEIVED STATE

 Queue for processing after entering ESTABLISHED state. If there
 is no room to queue this request, respond with "error:
 insufficient resources".

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If insufficient incoming segments are queued to satisfy the
 request, queue the request. If there is no queue space to
 remember the RECEIVE, respond with "error: insufficient
 resources".

 Reassemble queued incoming segments into receive buffer and return
 to user. Mark "push seen" (PUSH) if this is the case.

 If RCV.UP is in advance of the data currently being passed to the
 user notify the user of the presence of urgent data.

 When the TCP takes responsibility for delivering data to the user
 that fact must be communicated to the sender via an
 acknowledgment. The formation of such an acknowledgment is
 described below in the discussion of processing an incoming
 segment.

[Page 58]

September 1981
 Transmission Control Protocol
 Functional Specification
RECEIVE Call

 CLOSE-WAIT STATE

 Since the remote side has already sent FIN, RECEIVEs must be
 satisfied by text already on hand, but not yet delivered to the
 user. If no text is awaiting delivery, the RECEIVE will get a
 "error: connection closing" response. Otherwise, any remaining
 text can be used to satisfy the RECEIVE.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Return "error: connection closing".

 [Page 59]

 September 1981
Transmission Control Protocol
Functional Specification
 CLOSE Call

 CLOSE Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user does not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise, return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs are returned with "error: closing"
 responses. Delete TCB, enter CLOSED state, and return.

 SYN-SENT STATE

 Delete the TCB and return "error: closing" responses to any
 queued SENDs, or RECEIVEs.

 SYN-RECEIVED STATE

 If no SENDs have been issued and there is no pending data to send,
 then form a FIN segment and send it, and enter FIN-WAIT-1 state;
 otherwise queue for processing after entering ESTABLISHED state.

 ESTABLISHED STATE

 Queue this until all preceding SENDs have been segmentized, then
 form a FIN segment and send it. In any case, enter FIN-WAIT-1
 state.

 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Strictly speaking, this is an error and should receive a "error:
 connection closing" response. An "ok" response would be
 acceptable, too, as long as a second FIN is not emitted (the first
 FIN may be retransmitted though).

[Page 60]

September 1981
 Transmission Control Protocol
 Functional Specification
CLOSE Call

 CLOSE-WAIT STATE

 Queue this request until all preceding SENDs have been
 segmentized; then send a FIN segment, enter CLOSING state.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Respond with "error: connection closing".

 [Page 61]

 September 1981
Transmission Control Protocol
Functional Specification
 ABORT Call

 ABORT Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Any outstanding RECEIVEs should be returned with "error:
 connection reset" responses. Delete TCB, enter CLOSED state, and
 return.

 SYN-SENT STATE

 All queued SENDs and RECEIVEs should be given "connection reset"
 notification, delete the TCB, enter CLOSED state, and return.

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE

 Send a reset segment:

 <SEQ=SND.NXT><CTL=RST>

 All queued SENDs and RECEIVEs should be given "connection reset"
 notification; all segments queued for transmission (except for the
 RST formed above) or retransmission should be flushed, delete the
 TCB, enter CLOSED state, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Respond with "ok" and delete the TCB, enter CLOSED state, and
 return.

[Page 62]

September 1981
 Transmission Control Protocol
 Functional Specification
STATUS Call

 STATUS Call

 CLOSED STATE (i.e., TCB does not exist)

 If the user should not have access to such a connection, return
 "error: connection illegal for this process".

 Otherwise return "error: connection does not exist".

 LISTEN STATE

 Return "state = LISTEN", and the TCB pointer.

 SYN-SENT STATE

 Return "state = SYN-SENT", and the TCB pointer.

 SYN-RECEIVED STATE

 Return "state = SYN-RECEIVED", and the TCB pointer.

 ESTABLISHED STATE

 Return "state = ESTABLISHED", and the TCB pointer.

 FIN-WAIT-1 STATE

 Return "state = FIN-WAIT-1", and the TCB pointer.

 FIN-WAIT-2 STATE

 Return "state = FIN-WAIT-2", and the TCB pointer.

 CLOSE-WAIT STATE

 Return "state = CLOSE-WAIT", and the TCB pointer.

 CLOSING STATE

 Return "state = CLOSING", and the TCB pointer.

 LAST-ACK STATE

 Return "state = LAST-ACK", and the TCB pointer.

 [Page 63]

 September 1981
Transmission Control Protocol
Functional Specification
 STATUS Call

 TIME-WAIT STATE

 Return "state = TIME-WAIT", and the TCB pointer.

[Page 64]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 SEGMENT ARRIVES

 If the state is CLOSED (i.e., TCB does not exist) then

 all data in the incoming segment is discarded. An incoming
 segment containing a RST is discarded. An incoming segment not
 containing a RST causes a RST to be sent in response. The
 acknowledgment and sequence field values are selected to make the
 reset sequence acceptable to the TCP that sent the offending
 segment.

 If the ACK bit is off, sequence number zero is used,

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the ACK bit is on,

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 If the state is LISTEN then

 first check for an RST

 An incoming RST should be ignored. Return.

 second check for an ACK

 Any acknowledgment is bad if it arrives on a connection still in
 the LISTEN state. An acceptable reset segment should be formed
 for any arriving ACK-bearing segment. The RST should be
 formatted as follows:

 <SEQ=SEG.ACK><CTL=RST>

 Return.

 third check for a SYN

 If the SYN bit is set, check the security. If the
 security/compartment on the incoming segment does not exactly
 match the security/compartment in the TCB then send a reset and
 return.

 <SEQ=SEG.ACK><CTL=RST>

 [Page 65]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 If the SEG.PRC is greater than the TCB.PRC then if allowed by
 the user and the system set TCB.PRC<-SEG.PRC, if not allowed
 send a reset and return.

 <SEQ=SEG.ACK><CTL=RST>

 If the SEG.PRC is less than the TCB.PRC then continue.

 Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
 control or text should be queued for processing later. ISS
 should be selected and a SYN segment sent of the form:

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
 state should be changed to SYN-RECEIVED. Note that any other
 incoming control or data (combined with SYN) will be processed
 in the SYN-RECEIVED state, but processing of SYN and ACK should
 not be repeated. If the listen was not fully specified (i.e.,
 the foreign socket was not fully specified), then the
 unspecified fields should be filled in now.

 fourth other text or control

 Any other control or text-bearing segment (not containing SYN)
 must have an ACK and thus would be discarded by the ACK
 processing. An incoming RST segment could not be valid, since
 it could not have been sent in response to anything sent by this
 incarnation of the connection. So you are unlikely to get here,
 but if you do, drop the segment, and return.

 If the state is SYN-SENT then

 first check the ACK bit

 If the ACK bit is set

 If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless
 the RST bit is set, if so drop the segment and return)

 <SEQ=SEG.ACK><CTL=RST>

 and discard the segment. Return.

 If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.

 second check the RST bit

[Page 66]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 If the RST bit is set

 If the ACK was acceptable then signal the user "error:
 connection reset", drop the segment, enter CLOSED state,
 delete TCB, and return. Otherwise (no ACK) drop the segment
 and return.

 third check the security and precedence

 If the security/compartment in the segment does not exactly
 match the security/compartment in the TCB, send a reset

 If there is an ACK

 <SEQ=SEG.ACK><CTL=RST>

 Otherwise

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If there is an ACK

 The precedence in the segment must match the precedence in the
 TCB, if not, send a reset

 <SEQ=SEG.ACK><CTL=RST>

 If there is no ACK

 If the precedence in the segment is higher than the precedence
 in the TCB then if allowed by the user and the system raise
 the precedence in the TCB to that in the segment, if not
 allowed to raise the prec then send a reset.

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 If the precedence in the segment is lower than the precedence
 in the TCB continue.

 If a reset was sent, discard the segment and return.

 fourth check the SYN bit

 This step should be reached only if the ACK is ok, or there is
 no ACK, and it the segment did not contain a RST.

 If the SYN bit is on and the security/compartment and precedence

 [Page 67]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
 SEG.SEQ. SND.UNA should be advanced to equal SEG.ACK (if there
 is an ACK), and any segments on the retransmission queue which
 are thereby acknowledged should be removed.

 If SND.UNA > ISS (our SYN has been ACKed), change the connection
 state to ESTABLISHED, form an ACK segment

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 and send it. Data or controls which were queued for
 transmission may be included. If there are other controls or
 text in the segment then continue processing at the sixth step
 below where the URG bit is checked, otherwise return.

 Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

 <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

 and send it. If there are other controls or text in the
 segment, queue them for processing after the ESTABLISHED state
 has been reached, return.

 fifth, if neither of the SYN or RST bits is set then drop the
 segment and return.

[Page 68]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 Otherwise,

 first check sequence number

 SYN-RECEIVED STATE
 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 Segments are processed in sequence. Initial tests on arrival
 are used to discard old duplicates, but further processing is
 done in SEG.SEQ order. If a segment’s contents straddle the
 boundary between old and new, only the new parts should be
 processed.

 There are four cases for the acceptability test for an incoming
 segment:

 Segment Receive Test
 Length Window
 ------- ------- ---

 0 0 SEG.SEQ = RCV.NXT

 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

 >0 0 not acceptable

 >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
 or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If the RCV.WND is zero, no segments will be acceptable, but
 special allowance should be made to accept valid ACKs, URGs and
 RSTs.

 If an incoming segment is not acceptable, an acknowledgment
 should be sent in reply (unless the RST bit is set, if so drop
 the segment and return):

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 After sending the acknowledgment, drop the unacceptable segment
 and return.

 [Page 69]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 In the following it is assumed that the segment is the idealized
 segment that begins at RCV.NXT and does not exceed the window.
 One could tailor actual segments to fit this assumption by
 trimming off any portions that lie outside the window (including
 SYN and FIN), and only processing further if the segment then
 begins at RCV.NXT. Segments with higher begining sequence
 numbers may be held for later processing.

 second check the RST bit,

 SYN-RECEIVED STATE

 If the RST bit is set

 If this connection was initiated with a passive OPEN (i.e.,
 came from the LISTEN state), then return this connection to
 LISTEN state and return. The user need not be informed. If
 this connection was initiated with an active OPEN (i.e., came
 from SYN-SENT state) then the connection was refused, signal
 the user "connection refused". In either case, all segments
 on the retransmission queue should be removed. And in the
 active OPEN case, enter the CLOSED state and delete the TCB,
 and return.

 ESTABLISHED
 FIN-WAIT-1
 FIN-WAIT-2
 CLOSE-WAIT

 If the RST bit is set then, any outstanding RECEIVEs and SEND
 should receive "reset" responses. All segment queues should be
 flushed. Users should also receive an unsolicited general
 "connection reset" signal. Enter the CLOSED state, delete the
 TCB, and return.

 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 If the RST bit is set then, enter the CLOSED state, delete the
 TCB, and return.

[Page 70]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 third check security and precedence

 SYN-RECEIVED

 If the security/compartment and precedence in the segment do not
 exactly match the security/compartment and precedence in the TCB
 then send a reset, and return.

 ESTABLISHED STATE

 If the security/compartment and precedence in the segment do not
 exactly match the security/compartment and precedence in the TCB
 then send a reset, any outstanding RECEIVEs and SEND should
 receive "reset" responses. All segment queues should be
 flushed. Users should also receive an unsolicited general
 "connection reset" signal. Enter the CLOSED state, delete the
 TCB, and return.

 Note this check is placed following the sequence check to prevent
 a segment from an old connection between these ports with a
 different security or precedence from causing an abort of the
 current connection.

 fourth, check the SYN bit,

 SYN-RECEIVED
 ESTABLISHED STATE
 FIN-WAIT STATE-1
 FIN-WAIT STATE-2
 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 If the SYN is in the window it is an error, send a reset, any
 outstanding RECEIVEs and SEND should receive "reset" responses,
 all segment queues should be flushed, the user should also
 receive an unsolicited general "connection reset" signal, enter
 the CLOSED state, delete the TCB, and return.

 If the SYN is not in the window this step would not be reached
 and an ack would have been sent in the first step (sequence
 number check).

 [Page 71]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 fifth check the ACK field,

 if the ACK bit is off drop the segment and return

 if the ACK bit is on

 SYN-RECEIVED STATE

 If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state
 and continue processing.

 If the segment acknowledgment is not acceptable, form a
 reset segment,

 <SEQ=SEG.ACK><CTL=RST>

 and send it.

 ESTABLISHED STATE

 If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
 Any segments on the retransmission queue which are thereby
 entirely acknowledged are removed. Users should receive
 positive acknowledgments for buffers which have been SENT and
 fully acknowledged (i.e., SEND buffer should be returned with
 "ok" response). If the ACK is a duplicate
 (SEG.ACK < SND.UNA), it can be ignored. If the ACK acks
 something not yet sent (SEG.ACK > SND.NXT) then send an ACK,
 drop the segment, and return.

 If SND.UNA < SEG.ACK =< SND.NXT, the send window should be
 updated. If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and
 SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set
 SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK.

 Note that SND.WND is an offset from SND.UNA, that SND.WL1
 records the sequence number of the last segment used to update
 SND.WND, and that SND.WL2 records the acknowledgment number of
 the last segment used to update SND.WND. The check here
 prevents using old segments to update the window.

[Page 72]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 FIN-WAIT-1 STATE

 In addition to the processing for the ESTABLISHED state, if
 our FIN is now acknowledged then enter FIN-WAIT-2 and continue
 processing in that state.

 FIN-WAIT-2 STATE

 In addition to the processing for the ESTABLISHED state, if
 the retransmission queue is empty, the user’s CLOSE can be
 acknowledged ("ok") but do not delete the TCB.

 CLOSE-WAIT STATE

 Do the same processing as for the ESTABLISHED state.

 CLOSING STATE

 In addition to the processing for the ESTABLISHED state, if
 the ACK acknowledges our FIN then enter the TIME-WAIT state,
 otherwise ignore the segment.

 LAST-ACK STATE

 The only thing that can arrive in this state is an
 acknowledgment of our FIN. If our FIN is now acknowledged,
 delete the TCB, enter the CLOSED state, and return.

 TIME-WAIT STATE

 The only thing that can arrive in this state is a
 retransmission of the remote FIN. Acknowledge it, and restart
 the 2 MSL timeout.

 sixth, check the URG bit,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and signal
 the user that the remote side has urgent data if the urgent
 pointer (RCV.UP) is in advance of the data consumed. If the
 user has already been signaled (or is still in the "urgent
 mode") for this continuous sequence of urgent data, do not
 signal the user again.

 [Page 73]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT

 This should not occur, since a FIN has been received from the
 remote side. Ignore the URG.

 seventh, process the segment text,

 ESTABLISHED STATE
 FIN-WAIT-1 STATE
 FIN-WAIT-2 STATE

 Once in the ESTABLISHED state, it is possible to deliver segment
 text to user RECEIVE buffers. Text from segments can be moved
 into buffers until either the buffer is full or the segment is
 empty. If the segment empties and carries an PUSH flag, then
 the user is informed, when the buffer is returned, that a PUSH
 has been received.

 When the TCP takes responsibility for delivering the data to the
 user it must also acknowledge the receipt of the data.

 Once the TCP takes responsibility for the data it advances
 RCV.NXT over the data accepted, and adjusts RCV.WND as
 apporopriate to the current buffer availability. The total of
 RCV.NXT and RCV.WND should not be reduced.

 Please note the window management suggestions in section 3.7.

 Send an acknowledgment of the form:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 This acknowledgment should be piggybacked on a segment being
 transmitted if possible without incurring undue delay.

[Page 74]

September 1981
 Transmission Control Protocol
 Functional Specification
SEGMENT ARRIVES

 CLOSE-WAIT STATE
 CLOSING STATE
 LAST-ACK STATE
 TIME-WAIT STATE

 This should not occur, since a FIN has been received from the
 remote side. Ignore the segment text.

 eighth, check the FIN bit,

 Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT
 since the SEG.SEQ cannot be validated; drop the segment and
 return.

 If the FIN bit is set, signal the user "connection closing" and
 return any pending RECEIVEs with same message, advance RCV.NXT
 over the FIN, and send an acknowledgment for the FIN. Note that
 FIN implies PUSH for any segment text not yet delivered to the
 user.

 SYN-RECEIVED STATE
 ESTABLISHED STATE

 Enter the CLOSE-WAIT state.

 FIN-WAIT-1 STATE

 If our FIN has been ACKed (perhaps in this segment), then
 enter TIME-WAIT, start the time-wait timer, turn off the other
 timers; otherwise enter the CLOSING state.

 FIN-WAIT-2 STATE

 Enter the TIME-WAIT state. Start the time-wait timer, turn
 off the other timers.

 CLOSE-WAIT STATE

 Remain in the CLOSE-WAIT state.

 CLOSING STATE

 Remain in the CLOSING state.

 LAST-ACK STATE

 Remain in the LAST-ACK state.

 [Page 75]

 September 1981
Transmission Control Protocol
Functional Specification
 SEGMENT ARRIVES

 TIME-WAIT STATE

 Remain in the TIME-WAIT state. Restart the 2 MSL time-wait
 timeout.

 and return.

[Page 76]

September 1981
 Transmission Control Protocol
 Functional Specification
USER TIMEOUT

 USER TIMEOUT

 For any state if the user timeout expires, flush all queues, signal
 the user "error: connection aborted due to user timeout" in general
 and for any outstanding calls, delete the TCB, enter the CLOSED
 state and return.

 RETRANSMISSION TIMEOUT

 For any state if the retransmission timeout expires on a segment in
 the retransmission queue, send the segment at the front of the
 retransmission queue again, reinitialize the retransmission timer,
 and return.

 TIME-WAIT TIMEOUT

 If the time-wait timeout expires on a connection delete the TCB,
 enter the CLOSED state and return.

 [Page 77]

 September 1981
Transmission Control Protocol

[Page 78]

September 1981
 Transmission Control Protocol

 GLOSSARY

1822
 BBN Report 1822, "The Specification of the Interconnection of
 a Host and an IMP". The specification of interface between a
 host and the ARPANET.

ACK
 A control bit (acknowledge) occupying no sequence space, which
 indicates that the acknowledgment field of this segment
 specifies the next sequence number the sender of this segment
 is expecting to receive, hence acknowledging receipt of all
 previous sequence numbers.

ARPANET message
 The unit of transmission between a host and an IMP in the
 ARPANET. The maximum size is about 1012 octets (8096 bits).

ARPANET packet
 A unit of transmission used internally in the ARPANET between
 IMPs. The maximum size is about 126 octets (1008 bits).

connection
 A logical communication path identified by a pair of sockets.

datagram
 A message sent in a packet switched computer communications
 network.

Destination Address
 The destination address, usually the network and host
 identifiers.

FIN
 A control bit (finis) occupying one sequence number, which
 indicates that the sender will send no more data or control
 occupying sequence space.

fragment
 A portion of a logical unit of data, in particular an internet
 fragment is a portion of an internet datagram.

FTP
 A file transfer protocol.

 [Page 79]

 September 1981
Transmission Control Protocol
Glossary

header
 Control information at the beginning of a message, segment,
 fragment, packet or block of data.

host
 A computer. In particular a source or destination of messages
 from the point of view of the communication network.

Identification
 An Internet Protocol field. This identifying value assigned
 by the sender aids in assembling the fragments of a datagram.

IMP
 The Interface Message Processor, the packet switch of the
 ARPANET.

internet address
 A source or destination address specific to the host level.

internet datagram
 The unit of data exchanged between an internet module and the
 higher level protocol together with the internet header.

internet fragment
 A portion of the data of an internet datagram with an internet
 header.

IP
 Internet Protocol.

IRS
 The Initial Receive Sequence number. The first sequence
 number used by the sender on a connection.

ISN
 The Initial Sequence Number. The first sequence number used
 on a connection, (either ISS or IRS). Selected on a clock
 based procedure.

ISS
 The Initial Send Sequence number. The first sequence number
 used by the sender on a connection.

leader
 Control information at the beginning of a message or block of
 data. In particular, in the ARPANET, the control information
 on an ARPANET message at the host-IMP interface.

[Page 80]

September 1981
 Transmission Control Protocol
 Glossary

left sequence
 This is the next sequence number to be acknowledged by the
 data receiving TCP (or the lowest currently unacknowledged
 sequence number) and is sometimes referred to as the left edge
 of the send window.

local packet
 The unit of transmission within a local network.

module
 An implementation, usually in software, of a protocol or other
 procedure.

MSL
 Maximum Segment Lifetime, the time a TCP segment can exist in
 the internetwork system. Arbitrarily defined to be 2 minutes.

octet
 An eight bit byte.

Options
 An Option field may contain several options, and each option
 may be several octets in length. The options are used
 primarily in testing situations; for example, to carry
 timestamps. Both the Internet Protocol and TCP provide for
 options fields.

packet
 A package of data with a header which may or may not be
 logically complete. More often a physical packaging than a
 logical packaging of data.

port
 The portion of a socket that specifies which logical input or
 output channel of a process is associated with the data.

process
 A program in execution. A source or destination of data from
 the point of view of the TCP or other host-to-host protocol.

PUSH
 A control bit occupying no sequence space, indicating that
 this segment contains data that must be pushed through to the
 receiving user.

RCV.NXT
 receive next sequence number

 [Page 81]

 September 1981
Transmission Control Protocol
Glossary

RCV.UP
 receive urgent pointer

RCV.WND
 receive window

receive next sequence number
 This is the next sequence number the local TCP is expecting to
 receive.

receive window
 This represents the sequence numbers the local (receiving) TCP
 is willing to receive. Thus, the local TCP considers that
 segments overlapping the range RCV.NXT to
 RCV.NXT + RCV.WND - 1 carry acceptable data or control.
 Segments containing sequence numbers entirely outside of this
 range are considered duplicates and discarded.

RST
 A control bit (reset), occupying no sequence space, indicating
 that the receiver should delete the connection without further
 interaction. The receiver can determine, based on the
 sequence number and acknowledgment fields of the incoming
 segment, whether it should honor the reset command or ignore
 it. In no case does receipt of a segment containing RST give
 rise to a RST in response.

RTP
 Real Time Protocol: A host-to-host protocol for communication
 of time critical information.

SEG.ACK
 segment acknowledgment

SEG.LEN
 segment length

SEG.PRC
 segment precedence value

SEG.SEQ
 segment sequence

SEG.UP
 segment urgent pointer field

[Page 82]

September 1981
 Transmission Control Protocol
 Glossary

SEG.WND
 segment window field

segment
 A logical unit of data, in particular a TCP segment is the
 unit of data transfered between a pair of TCP modules.

segment acknowledgment
 The sequence number in the acknowledgment field of the
 arriving segment.

segment length
 The amount of sequence number space occupied by a segment,
 including any controls which occupy sequence space.

segment sequence
 The number in the sequence field of the arriving segment.

send sequence
 This is the next sequence number the local (sending) TCP will
 use on the connection. It is initially selected from an
 initial sequence number curve (ISN) and is incremented for
 each octet of data or sequenced control transmitted.

send window
 This represents the sequence numbers which the remote
 (receiving) TCP is willing to receive. It is the value of the
 window field specified in segments from the remote (data
 receiving) TCP. The range of new sequence numbers which may
 be emitted by a TCP lies between SND.NXT and
 SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
 between SND.UNA and SND.NXT are expected, of course.)

SND.NXT
 send sequence

SND.UNA
 left sequence

SND.UP
 send urgent pointer

SND.WL1
 segment sequence number at last window update

SND.WL2
 segment acknowledgment number at last window update

 [Page 83]

 September 1981
Transmission Control Protocol
Glossary

SND.WND
 send window

socket
 An address which specifically includes a port identifier, that
 is, the concatenation of an Internet Address with a TCP port.

Source Address
 The source address, usually the network and host identifiers.

SYN
 A control bit in the incoming segment, occupying one sequence
 number, used at the initiation of a connection, to indicate
 where the sequence numbering will start.

TCB
 Transmission control block, the data structure that records
 the state of a connection.

TCB.PRC
 The precedence of the connection.

TCP
 Transmission Control Protocol: A host-to-host protocol for
 reliable communication in internetwork environments.

TOS
 Type of Service, an Internet Protocol field.

Type of Service
 An Internet Protocol field which indicates the type of service
 for this internet fragment.

URG
 A control bit (urgent), occupying no sequence space, used to
 indicate that the receiving user should be notified to do
 urgent processing as long as there is data to be consumed with
 sequence numbers less than the value indicated in the urgent
 pointer.

urgent pointer
 A control field meaningful only when the URG bit is on. This
 field communicates the value of the urgent pointer which
 indicates the data octet associated with the sending user’s
 urgent call.

[Page 84]

September 1981
 Transmission Control Protocol

 REFERENCES

[1] Cerf, V., and R. Kahn, "A Protocol for Packet Network
 Intercommunication", IEEE Transactions on Communications,
 Vol. COM-22, No. 5, pp 637-648, May 1974.

[2] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
 Protocol Specification", RFC 791, USC/Information Sciences
 Institute, September 1981.

[3] Dalal, Y. and C. Sunshine, "Connection Management in Transport
 Protocols", Computer Networks, Vol. 2, No. 6, pp. 454-473,
 December 1978.

[4] Postel, J., "Assigned Numbers", RFC 790, USC/Information Sciences
 Institute, September 1981.

 [Page 85]

Network Working Group S. Kent
Request for Comments: 2401 BBN Corp
Obsoletes: 1825 R. Atkinson
Category: Standards Track @Home Network
 November 1998

 Security Architecture for the Internet Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

Table of Contents

1. Introduction..3
 1.1 Summary of Contents of Document..................................3
 1.2 Audience...3
 1.3 Related Documents..4
2. Design Objectives...4
 2.1 Goals/Objectives/Requirements/Problem Description................4
 2.2 Caveats and Assumptions..5
3. System Overview...5
 3.1 What IPsec Does..6
 3.2 How IPsec Works..6
 3.3 Where IPsec May Be Implemented...................................7
4. Security Associations...8
 4.1 Definition and Scope...8
 4.2 Security Association Functionality..............................10
 4.3 Combining Security Associations.................................11
 4.4 Security Association Databases..................................13
 4.4.1 The Security Policy Database (SPD).........................14
 4.4.2 Selectors..17
 4.4.3 Security Association Database (SAD)........................21
 4.5 Basic Combinations of Security Associations.....................24
 4.6 SA and Key Management...26
 4.6.1 Manual Techniques..27
 4.6.2 Automated SA and Key Management............................27
 4.6.3 Locating a Security Gateway................................28
 4.7 Security Associations and Multicast.............................29

Kent & Atkinson Standards Track [Page 1]

RFC 2401 Security Architecture for IP November 1998

5. IP Traffic Processing..30
 5.1 Outbound IP Traffic Processing..................................30
 5.1.1 Selecting and Using an SA or SA Bundle.....................30
 5.1.2 Header Construction for Tunnel Mode........................31
 5.1.2.1 IPv4 -- Header Construction for Tunnel Mode...........31
 5.1.2.2 IPv6 -- Header Construction for Tunnel Mode...........32
 5.2 Processing Inbound IP Traffic...................................33
 5.2.1 Selecting and Using an SA or SA Bundle.....................33
 5.2.2 Handling of AH and ESP tunnels.............................34
6. ICMP Processing (relevant to IPsec)................................35
 6.1 PMTU/DF Processing..36
 6.1.1 DF Bit...36
 6.1.2 Path MTU Discovery (PMTU)..................................36
 6.1.2.1 Propagation of PMTU...................................36
 6.1.2.2 Calculation of PMTU...................................37
 6.1.2.3 Granularity of PMTU Processing........................37
 6.1.2.4 PMTU Aging..38
7. Auditing...39
8. Use in Systems Supporting Information Flow Security................39
 8.1 Relationship Between Security Associations and Data Sensitivity.40
 8.2 Sensitivity Consistency Checking................................40
 8.3 Additional MLS Attributes for Security Association Databases....41
 8.4 Additional Inbound Processing Steps for MLS Networking..........41
 8.5 Additional Outbound Processing Steps for MLS Networking.........41
 8.6 Additional MLS Processing for Security Gateways.................42
9. Performance Issues...42
10. Conformance Requirements..43
11. Security Considerations...43
12. Differences from RFC 1825...43
Acknowledgements..44
Appendix A -- Glossary..45
Appendix B -- Analysis/Discussion of PMTU/DF/Fragmentation Issues.....48
 B.1 DF bit..48
 B.2 Fragmentation...48
 B.3 Path MTU Discovery..52
 B.3.1 Identifying the Originating Host(s)........................53
 B.3.2 Calculation of PMTU..55
 B.3.3 Granularity of Maintaining PMTU Data.......................56
 B.3.4 Per Socket Maintenance of PMTU Data........................57
 B.3.5 Delivery of PMTU Data to the Transport Layer...............57
 B.3.6 Aging of PMTU Data...57
Appendix C -- Sequence Space Window Code Example......................58
Appendix D -- Categorization of ICMP messages.........................60
References..63
Disclaimer..64
Author Information..65
Full Copyright Statement..66

Kent & Atkinson Standards Track [Page 2]

RFC 2401 Security Architecture for IP November 1998

1. Introduction

1.1 Summary of Contents of Document

 This memo specifies the base architecture for IPsec compliant
 systems. The goal of the architecture is to provide various security
 services for traffic at the IP layer, in both the IPv4 and IPv6
 environments. This document describes the goals of such systems,
 their components and how they fit together with each other and into
 the IP environment. It also describes the security services offered
 by the IPsec protocols, and how these services can be employed in the
 IP environment. This document does not address all aspects of IPsec
 architecture. Subsequent documents will address additional
 architectural details of a more advanced nature, e.g., use of IPsec
 in NAT environments and more complete support for IP multicast. The
 following fundamental components of the IPsec security architecture
 are discussed in terms of their underlying, required functionality.
 Additional RFCs (see Section 1.3 for pointers to other documents)
 define the protocols in (a), (c), and (d).

 a. Security Protocols -- Authentication Header (AH) and
 Encapsulating Security Payload (ESP)
 b. Security Associations -- what they are and how they work,
 how they are managed, associated processing
 c. Key Management -- manual and automatic (The Internet Key
 Exchange (IKE))
 d. Algorithms for authentication and encryption

 This document is not an overall Security Architecture for the
 Internet; it addresses security only at the IP layer, provided
 through the use of a combination of cryptographic and protocol
 security mechanisms.

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in RFC 2119 [Bra97].

1.2 Audience

 The target audience for this document includes implementers of this
 IP security technology and others interested in gaining a general
 background understanding of this system. In particular, prospective
 users of this technology (end users or system administrators) are
 part of the target audience. A glossary is provided as an appendix

Kent & Atkinson Standards Track [Page 3]

RFC 2401 Security Architecture for IP November 1998

 to help fill in gaps in background/vocabulary. This document assumes
 that the reader is familiar with the Internet Protocol, related
 networking technology, and general security terms and concepts.

1.3 Related Documents

 As mentioned above, other documents provide detailed definitions of
 some of the components of IPsec and of their inter-relationship.
 They include RFCs on the following topics:

 a. "IP Security Document Roadmap" [TDG97] -- a document
 providing guidelines for specifications describing encryption
 and authentication algorithms used in this system.
 b. security protocols -- RFCs describing the Authentication
 Header (AH) [KA98a] and Encapsulating Security Payload (ESP)
 [KA98b] protocols.
 c. algorithms for authentication and encryption -- a separate
 RFC for each algorithm.
 d. automatic key management -- RFCs on "The Internet Key
 Exchange (IKE)" [HC98], "Internet Security Association and
 Key Management Protocol (ISAKMP)" [MSST97],"The OAKLEY Key
 Determination Protocol" [Orm97], and "The Internet IP
 Security Domain of Interpretation for ISAKMP" [Pip98].

2. Design Objectives

2.1 Goals/Objectives/Requirements/Problem Description

 IPsec is designed to provide interoperable, high quality,
 cryptographically-based security for IPv4 and IPv6. The set of
 security services offered includes access control, connectionless
 integrity, data origin authentication, protection against replays (a
 form of partial sequence integrity), confidentiality (encryption),
 and limited traffic flow confidentiality. These services are
 provided at the IP layer, offering protection for IP and/or upper
 layer protocols.

 These objectives are met through the use of two traffic security
 protocols, the Authentication Header (AH) and the Encapsulating
 Security Payload (ESP), and through the use of cryptographic key
 management procedures and protocols. The set of IPsec protocols
 employed in any context, and the ways in which they are employed,
 will be determined by the security and system requirements of users,
 applications, and/or sites/organizations.

 When these mechanisms are correctly implemented and deployed, they
 ought not to adversely affect users, hosts, and other Internet
 components that do not employ these security mechanisms for

Kent & Atkinson Standards Track [Page 4]

RFC 2401 Security Architecture for IP November 1998

 protection of their traffic. These mechanisms also are designed to
 be algorithm-independent. This modularity permits selection of
 different sets of algorithms without affecting the other parts of the
 implementation. For example, different user communities may select
 different sets of algorithms (creating cliques) if required.

 A standard set of default algorithms is specified to facilitate
 interoperability in the global Internet. The use of these
 algorithms, in conjunction with IPsec traffic protection and key
 management protocols, is intended to permit system and application
 developers to deploy high quality, Internet layer, cryptographic
 security technology.

2.2 Caveats and Assumptions

 The suite of IPsec protocols and associated default algorithms are
 designed to provide high quality security for Internet traffic.
 However, the security offered by use of these protocols ultimately
 depends on the quality of the their implementation, which is outside
 the scope of this set of standards. Moreover, the security of a
 computer system or network is a function of many factors, including
 personnel, physical, procedural, compromising emanations, and
 computer security practices. Thus IPsec is only one part of an
 overall system security architecture.

 Finally, the security afforded by the use of IPsec is critically
 dependent on many aspects of the operating environment in which the
 IPsec implementation executes. For example, defects in OS security,
 poor quality of random number sources, sloppy system management
 protocols and practices, etc. can all degrade the security provided
 by IPsec. As above, none of these environmental attributes are
 within the scope of this or other IPsec standards.

3. System Overview

 This section provides a high level description of how IPsec works,
 the components of the system, and how they fit together to provide
 the security services noted above. The goal of this description is
 to enable the reader to "picture" the overall process/system, see how
 it fits into the IP environment, and to provide context for later
 sections of this document, which describe each of the components in
 more detail.

 An IPsec implementation operates in a host or a security gateway
 environment, affording protection to IP traffic. The protection
 offered is based on requirements defined by a Security Policy
 Database (SPD) established and maintained by a user or system
 administrator, or by an application operating within constraints

Kent & Atkinson Standards Track [Page 5]

RFC 2401 Security Architecture for IP November 1998

 established by either of the above. In general, packets are selected
 for one of three processing modes based on IP and transport layer
 header information (Selectors, Section 4.4.2) matched against entries
 in the database (SPD). Each packet is either afforded IPsec security
 services, discarded, or allowed to bypass IPsec, based on the
 applicable database policies identified by the Selectors.

3.1 What IPsec Does

 IPsec provides security services at the IP layer by enabling a system
 to select required security protocols, determine the algorithm(s) to
 use for the service(s), and put in place any cryptographic keys
 required to provide the requested services. IPsec can be used to
 protect one or more "paths" between a pair of hosts, between a pair
 of security gateways, or between a security gateway and a host. (The
 term "security gateway" is used throughout the IPsec documents to
 refer to an intermediate system that implements IPsec protocols. For
 example, a router or a firewall implementing IPsec is a security
 gateway.)

 The set of security services that IPsec can provide includes access
 control, connectionless integrity, data origin authentication,
 rejection of replayed packets (a form of partial sequence integrity),
 confidentiality (encryption), and limited traffic flow
 confidentiality. Because these services are provided at the IP
 layer, they can be used by any higher layer protocol, e.g., TCP, UDP,
 ICMP, BGP, etc.

 The IPsec DOI also supports negotiation of IP compression [SMPT98],
 motivated in part by the observation that when encryption is employed
 within IPsec, it prevents effective compression by lower protocol
 layers.

3.2 How IPsec Works

 IPsec uses two protocols to provide traffic security --
 Authentication Header (AH) and Encapsulating Security Payload (ESP).
 Both protocols are described in more detail in their respective RFCs
 [KA98a, KA98b].

 o The IP Authentication Header (AH) [KA98a] provides
 connectionless integrity, data origin authentication, and an
 optional anti-replay service.
 o The Encapsulating Security Payload (ESP) protocol [KA98b] may
 provide confidentiality (encryption), and limited traffic flow
 confidentiality. It also may provide connectionless

Kent & Atkinson Standards Track [Page 6]

RFC 2401 Security Architecture for IP November 1998

 integrity, data origin authentication, and an anti-replay
 service. (One or the other set of these security services
 must be applied whenever ESP is invoked.)
 o Both AH and ESP are vehicles for access control, based on the
 distribution of cryptographic keys and the management of
 traffic flows relative to these security protocols.

 These protocols may be applied alone or in combination with each
 other to provide a desired set of security services in IPv4 and IPv6.
 Each protocol supports two modes of use: transport mode and tunnel
 mode. In transport mode the protocols provide protection primarily
 for upper layer protocols; in tunnel mode, the protocols are applied
 to tunneled IP packets. The differences between the two modes are
 discussed in Section 4.

 IPsec allows the user (or system administrator) to control the
 granularity at which a security service is offered. For example, one
 can create a single encrypted tunnel to carry all the traffic between
 two security gateways or a separate encrypted tunnel can be created
 for each TCP connection between each pair of hosts communicating
 across these gateways. IPsec management must incorporate facilities
 for specifying:

 o which security services to use and in what combinations
 o the granularity at which a given security protection should be
 applied
 o the algorithms used to effect cryptographic-based security

 Because these security services use shared secret values
 (cryptographic keys), IPsec relies on a separate set of mechanisms
 for putting these keys in place. (The keys are used for
 authentication/integrity and encryption services.) This document
 requires support for both manual and automatic distribution of keys.
 It specifies a specific public-key based approach (IKE -- [MSST97,
 Orm97, HC98]) for automatic key management, but other automated key
 distribution techniques MAY be used. For example, KDC-based systems
 such as Kerberos and other public-key systems such as SKIP could be
 employed.

3.3 Where IPsec May Be Implemented

 There are several ways in which IPsec may be implemented in a host or
 in conjunction with a router or firewall (to create a security
 gateway). Several common examples are provided below:

 a. Integration of IPsec into the native IP implementation. This
 requires access to the IP source code and is applicable to
 both hosts and security gateways.

Kent & Atkinson Standards Track [Page 7]

RFC 2401 Security Architecture for IP November 1998

 b. "Bump-in-the-stack" (BITS) implementations, where IPsec is
 implemented "underneath" an existing implementation of an IP
 protocol stack, between the native IP and the local network
 drivers. Source code access for the IP stack is not required
 in this context, making this implementation approach
 appropriate for use with legacy systems. This approach, when
 it is adopted, is usually employed in hosts.

 c. The use of an outboard crypto processor is a common design
 feature of network security systems used by the military, and
 of some commercial systems as well. It is sometimes referred
 to as a "Bump-in-the-wire" (BITW) implementation. Such
 implementations may be designed to serve either a host or a
 gateway (or both). Usually the BITW device is IP
 addressable. When supporting a single host, it may be quite
 analogous to a BITS implementation, but in supporting a
 router or firewall, it must operate like a security gateway.

4. Security Associations

 This section defines Security Association management requirements for
 all IPv6 implementations and for those IPv4 implementations that
 implement AH, ESP, or both. The concept of a "Security Association"
 (SA) is fundamental to IPsec. Both AH and ESP make use of SAs and a
 major function of IKE is the establishment and maintenance of
 Security Associations. All implementations of AH or ESP MUST support
 the concept of a Security Association as described below. The
 remainder of this section describes various aspects of Security
 Association management, defining required characteristics for SA
 policy management, traffic processing, and SA management techniques.

4.1 Definition and Scope

 A Security Association (SA) is a simplex "connection" that affords
 security services to the traffic carried by it. Security services
 are afforded to an SA by the use of AH, or ESP, but not both. If
 both AH and ESP protection is applied to a traffic stream, then two
 (or more) SAs are created to afford protection to the traffic stream.
 To secure typical, bi-directional communication between two hosts, or
 between two security gateways, two Security Associations (one in each
 direction) are required.

 A security association is uniquely identified by a triple consisting
 of a Security Parameter Index (SPI), an IP Destination Address, and a
 security protocol (AH or ESP) identifier. In principle, the
 Destination Address may be a unicast address, an IP broadcast
 address, or a multicast group address. However, IPsec SA management
 mechanisms currently are defined only for unicast SAs. Hence, in the

Kent & Atkinson Standards Track [Page 8]

RFC 2401 Security Architecture for IP November 1998

 discussions that follow, SAs will be described in the context of
 point-to-point communication, even though the concept is applicable
 in the point-to-multipoint case as well.

 As noted above, two types of SAs are defined: transport mode and
 tunnel mode. A transport mode SA is a security association between
 two hosts. In IPv4, a transport mode security protocol header
 appears immediately after the IP header and any options, and before
 any higher layer protocols (e.g., TCP or UDP). In IPv6, the security
 protocol header appears after the base IP header and extensions, but
 may appear before or after destination options, and before higher
 layer protocols. In the case of ESP, a transport mode SA provides
 security services only for these higher layer protocols, not for the
 IP header or any extension headers preceding the ESP header. In the
 case of AH, the protection is also extended to selected portions of
 the IP header, selected portions of extension headers, and selected
 options (contained in the IPv4 header, IPv6 Hop-by-Hop extension
 header, or IPv6 Destination extension headers). For more details on
 the coverage afforded by AH, see the AH specification [KA98a].

 A tunnel mode SA is essentially an SA applied to an IP tunnel.
 Whenever either end of a security association is a security gateway,
 the SA MUST be tunnel mode. Thus an SA between two security gateways
 is always a tunnel mode SA, as is an SA between a host and a security
 gateway. Note that for the case where traffic is destined for a
 security gateway, e.g., SNMP commands, the security gateway is acting
 as a host and transport mode is allowed. But in that case, the
 security gateway is not acting as a gateway, i.e., not transiting
 traffic. Two hosts MAY establish a tunnel mode SA between
 themselves. The requirement for any (transit traffic) SA involving a
 security gateway to be a tunnel SA arises due to the need to avoid
 potential problems with regard to fragmentation and reassembly of
 IPsec packets, and in circumstances where multiple paths (e.g., via
 different security gateways) exist to the same destination behind the
 security gateways.

 For a tunnel mode SA, there is an "outer" IP header that specifies
 the IPsec processing destination, plus an "inner" IP header that
 specifies the (apparently) ultimate destination for the packet. The
 security protocol header appears after the outer IP header, and
 before the inner IP header. If AH is employed in tunnel mode,
 portions of the outer IP header are afforded protection (as above),
 as well as all of the tunneled IP packet (i.e., all of the inner IP
 header is protected, as well as higher layer protocols). If ESP is
 employed, the protection is afforded only to the tunneled packet, not
 to the outer header.

Kent & Atkinson Standards Track [Page 9]

RFC 2401 Security Architecture for IP November 1998

 In summary,
 a) A host MUST support both transport and tunnel mode.
 b) A security gateway is required to support only tunnel
 mode. If it supports transport mode, that should be used
 only when the security gateway is acting as a host, e.g.,
 for network management.

4.2 Security Association Functionality

 The set of security services offered by an SA depends on the security
 protocol selected, the SA mode, the endpoints of the SA, and on the
 election of optional services within the protocol. For example, AH
 provides data origin authentication and connectionless integrity for
 IP datagrams (hereafter referred to as just "authentication"). The
 "precision" of the authentication service is a function of the
 granularity of the security association with which AH is employed, as
 discussed in Section 4.4.2, "Selectors".

 AH also offers an anti-replay (partial sequence integrity) service at
 the discretion of the receiver, to help counter denial of service
 attacks. AH is an appropriate protocol to employ when
 confidentiality is not required (or is not permitted, e.g , due to
 government restrictions on use of encryption). AH also provides
 authentication for selected portions of the IP header, which may be
 necessary in some contexts. For example, if the integrity of an IPv4
 option or IPv6 extension header must be protected en route between
 sender and receiver, AH can provide this service (except for the
 non-predictable but mutable parts of the IP header.)

 ESP optionally provides confidentiality for traffic. (The strength
 of the confidentiality service depends in part, on the encryption
 algorithm employed.) ESP also may optionally provide authentication
 (as defined above). If authentication is negotiated for an ESP SA,
 the receiver also may elect to enforce an anti-replay service with
 the same features as the AH anti-replay service. The scope of the
 authentication offered by ESP is narrower than for AH, i.e., the IP
 header(s) "outside" the ESP header is(are) not protected. If only
 the upper layer protocols need to be authenticated, then ESP
 authentication is an appropriate choice and is more space efficient
 than use of AH encapsulating ESP. Note that although both
 confidentiality and authentication are optional, they cannot both be
 omitted. At least one of them MUST be selected.

 If confidentiality service is selected, then an ESP (tunnel mode) SA
 between two security gateways can offer partial traffic flow
 confidentiality. The use of tunnel mode allows the inner IP headers
 to be encrypted, concealing the identities of the (ultimate) traffic
 source and destination. Moreover, ESP payload padding also can be

Kent & Atkinson Standards Track [Page 10]

RFC 2401 Security Architecture for IP November 1998

 invoked to hide the size of the packets, further concealing the
 external characteristics of the traffic. Similar traffic flow
 confidentiality services may be offered when a mobile user is
 assigned a dynamic IP address in a dialup context, and establishes a
 (tunnel mode) ESP SA to a corporate firewall (acting as a security
 gateway). Note that fine granularity SAs generally are more
 vulnerable to traffic analysis than coarse granularity ones which are
 carrying traffic from many subscribers.

4.3 Combining Security Associations

 The IP datagrams transmitted over an individual SA are afforded
 protection by exactly one security protocol, either AH or ESP, but
 not both. Sometimes a security policy may call for a combination of
 services for a particular traffic flow that is not achievable with a
 single SA. In such instances it will be necessary to employ multiple
 SAs to implement the required security policy. The term "security
 association bundle" or "SA bundle" is applied to a sequence of SAs
 through which traffic must be processed to satisfy a security policy.
 The order of the sequence is defined by the policy. (Note that the
 SAs that comprise a bundle may terminate at different endpoints. For
 example, one SA may extend between a mobile host and a security
 gateway and a second, nested SA may extend to a host behind the
 gateway.)

 Security associations may be combined into bundles in two ways:
 transport adjacency and iterated tunneling.

 o Transport adjacency refers to applying more than one
 security protocol to the same IP datagram, without invoking
 tunneling. This approach to combining AH and ESP allows
 for only one level of combination; further nesting yields
 no added benefit (assuming use of adequately strong
 algorithms in each protocol) since the processing is
 performed at one IPsec instance at the (ultimate)
 destination.

 Host 1 --- Security ---- Internet -- Security --- Host 2
 | | Gwy 1 Gwy 2 | |
 | | | |
 | -----Security Association 1 (ESP transport)------- |
 | |
 -------Security Association 2 (AH transport)----------

 o Iterated tunneling refers to the application of multiple
 layers of security protocols effected through IP tunneling.
 This approach allows for multiple levels of nesting, since
 each tunnel can originate or terminate at a different IPsec

Kent & Atkinson Standards Track [Page 11]

RFC 2401 Security Architecture for IP November 1998

 site along the path. No special treatment is expected for
 ISAKMP traffic at intermediate security gateways other than
 what can be specified through appropriate SPD entries (See
 Case 3 in Section 4.5)

 There are 3 basic cases of iterated tunneling -- support is
 required only for cases 2 and 3.:

 1. both endpoints for the SAs are the same -- The inner and
 outer tunnels could each be either AH or ESP, though it
 is unlikely that Host 1 would specify both to be the
 same, i.e., AH inside of AH or ESP inside of ESP.

 Host 1 --- Security ---- Internet -- Security --- Host 2
 | | Gwy 1 Gwy 2 | |
 | | | |
 | -------Security Association 1 (tunnel)---------- | |
 | |
 ---------Security Association 2 (tunnel)--------------

 2. one endpoint of the SAs is the same -- The inner and
 uter tunnels could each be either AH or ESP.

 Host 1 --- Security ---- Internet -- Security --- Host 2
 | | Gwy 1 Gwy 2 |
 | | | |
 | ----Security Association 1 (tunnel)---- |
 | |
 ---------Security Association 2 (tunnel)-------------

 3. neither endpoint is the same -- The inner and outer
 tunnels could each be either AH or ESP.

 Host 1 --- Security ---- Internet -- Security --- Host 2
 | Gwy 1 Gwy 2 |
 | | | |
 | --Security Assoc 1 (tunnel)- |
 | |
 -----------Security Association 2 (tunnel)-----------

 These two approaches also can be combined, e.g., an SA bundle could
 be constructed from one tunnel mode SA and one or two transport mode
 SAs, applied in sequence. (See Section 4.5 "Basic Combinations of
 Security Associations.") Note that nested tunnels can also occur
 where neither the source nor the destination endpoints of any of the
 tunnels are the same. In that case, there would be no host or
 security gateway with a bundle corresponding to the nested tunnels.

Kent & Atkinson Standards Track [Page 12]

RFC 2401 Security Architecture for IP November 1998

 For transport mode SAs, only one ordering of security protocols seems
 appropriate. AH is applied to both the upper layer protocols and
 (parts of) the IP header. Thus if AH is used in a transport mode, in
 conjunction with ESP, AH SHOULD appear as the first header after IP,
 prior to the appearance of ESP. In that context, AH is applied to
 the ciphertext output of ESP. In contrast, for tunnel mode SAs, one
 can imagine uses for various orderings of AH and ESP. The required
 set of SA bundle types that MUST be supported by a compliant IPsec
 implementation is described in Section 4.5.

4.4 Security Association Databases

 Many of the details associated with processing IP traffic in an IPsec
 implementation are largely a local matter, not subject to
 standardization. However, some external aspects of the processing
 must be standardized, to ensure interoperability and to provide a
 minimum management capability that is essential for productive use of
 IPsec. This section describes a general model for processing IP
 traffic relative to security associations, in support of these
 interoperability and functionality goals. The model described below
 is nominal; compliant implementations need not match details of this
 model as presented, but the external behavior of such implementations
 must be mappable to the externally observable characteristics of this
 model.

 There are two nominal databases in this model: the Security Policy
 Database and the Security Association Database. The former specifies
 the policies that determine the disposition of all IP traffic inbound
 or outbound from a host, security gateway, or BITS or BITW IPsec
 implementation. The latter database contains parameters that are
 associated with each (active) security association. This section
 also defines the concept of a Selector, a set of IP and upper layer
 protocol field values that is used by the Security Policy Database to
 map traffic to a policy, i.e., an SA (or SA bundle).

 Each interface for which IPsec is enabled requires nominally separate
 inbound vs. outbound databases (SAD and SPD), because of the
 directionality of many of the fields that are used as selectors.
 Typically there is just one such interface, for a host or security
 gateway (SG). Note that an SG would always have at least 2
 interfaces, but the "internal" one to the corporate net, usually
 would not have IPsec enabled and so only one pair of SADs and one
 pair of SPDs would be needed. On the other hand, if a host had
 multiple interfaces or an SG had multiple external interfaces, it
 might be necessary to have separate SAD and SPD pairs for each
 interface.

Kent & Atkinson Standards Track [Page 13]

RFC 2401 Security Architecture for IP November 1998

4.4.1 The Security Policy Database (SPD)

 Ultimately, a security association is a management construct used to
 enforce a security policy in the IPsec environment. Thus an
 essential element of SA processing is an underlying Security Policy
 Database (SPD) that specifies what services are to be offered to IP
 datagrams and in what fashion. The form of the database and its
 interface are outside the scope of this specification. However, this
 section does specify certain minimum management functionality that
 must be provided, to allow a user or system administrator to control
 how IPsec is applied to traffic transmitted or received by a host or
 transiting a security gateway.

 The SPD must be consulted during the processing of all traffic
 (INBOUND and OUTBOUND), including non-IPsec traffic. In order to
 support this, the SPD requires distinct entries for inbound and
 outbound traffic. One can think of this as separate SPDs (inbound
 vs. outbound). In addition, a nominally separate SPD must be
 provided for each IPsec-enabled interface.

 An SPD must discriminate among traffic that is afforded IPsec
 protection and traffic that is allowed to bypass IPsec. This applies
 to the IPsec protection to be applied by a sender and to the IPsec
 protection that must be present at the receiver. For any outbound or
 inbound datagram, three processing choices are possible: discard,
 bypass IPsec, or apply IPsec. The first choice refers to traffic
 that is not allowed to exit the host, traverse the security gateway,
 or be delivered to an application at all. The second choice refers
 to traffic that is allowed to pass without additional IPsec
 protection. The third choice refers to traffic that is afforded
 IPsec protection, and for such traffic the SPD must specify the
 security services to be provided, protocols to be employed,
 algorithms to be used, etc.

 For every IPsec implementation, there MUST be an administrative
 interface that allows a user or system administrator to manage the
 SPD. Specifically, every inbound or outbound packet is subject to
 processing by IPsec and the SPD must specify what action will be
 taken in each case. Thus the administrative interface must allow the
 user (or system administrator) to specify the security processing to
 be applied to any packet entering or exiting the system, on a packet
 by packet basis. (In a host IPsec implementation making use of a
 socket interface, the SPD may not need to be consulted on a per
 packet basis, but the effect is still the same.) The management
 interface for the SPD MUST allow creation of entries consistent with
 the selectors defined in Section 4.4.2, and MUST support (total)
 ordering of these entries. It is expected that through the use of
 wildcards in various selector fields, and because all packets on a

Kent & Atkinson Standards Track [Page 14]

RFC 2401 Security Architecture for IP November 1998

 single UDP or TCP connection will tend to match a single SPD entry,
 this requirement will not impose an unreasonably detailed level of
 SPD specification. The selectors are analogous to what are found in
 a stateless firewall or filtering router and which are currently
 manageable this way.

 In host systems, applications MAY be allowed to select what security
 processing is to be applied to the traffic they generate and consume.
 (Means of signalling such requests to the IPsec implementation are
 outside the scope of this standard.) However, the system
 administrator MUST be able to specify whether or not a user or
 application can override (default) system policies. Note that
 application specified policies may satisfy system requirements, so
 that the system may not need to do additional IPsec processing beyond
 that needed to meet an application’s requirements. The form of the
 management interface is not specified by this document and may differ
 for hosts vs. security gateways, and within hosts the interface may
 differ for socket-based vs. BITS implementations. However, this
 document does specify a standard set of SPD elements that all IPsec
 implementations MUST support.

 The SPD contains an ordered list of policy entries. Each policy
 entry is keyed by one or more selectors that define the set of IP
 traffic encompassed by this policy entry. (The required selector
 types are defined in Section 4.4.2.) These define the granularity of
 policies or SAs. Each entry includes an indication of whether
 traffic matching this policy will be bypassed, discarded, or subject
 to IPsec processing. If IPsec processing is to be applied, the entry
 includes an SA (or SA bundle) specification, listing the IPsec
 protocols, modes, and algorithms to be employed, including any
 nesting requirements. For example, an entry may call for all
 matching traffic to be protected by ESP in transport mode using
 3DES-CBC with an explicit IV, nested inside of AH in tunnel mode
 using HMAC/SHA-1. For each selector, the policy entry specifies how
 to derive the corresponding values for a new Security Association
 Database (SAD, see Section 4.4.3) entry from those in the SPD and the
 packet (Note that at present, ranges are only supported for IP
 addresses; but wildcarding can be expressed for all selectors):

 a. use the value in the packet itself -- This will limit use
 of the SA to those packets which have this packet’s value
 for the selector even if the selector for the policy entry
 has a range of allowed values or a wildcard for this
 selector.
 b. use the value associated with the policy entry -- If this
 were to be just a single value, then there would be no
 difference between (b) and (a). However, if the allowed
 values for the selector are a range (for IP addresses) or

Kent & Atkinson Standards Track [Page 15]

RFC 2401 Security Architecture for IP November 1998

 wildcard, then in the case of a range,(b) would enable use
 of the SA by any packet with a selector value within the
 range not just by packets with the selector value of the
 packet that triggered the creation of the SA. In the case
 of a wildcard, (b) would allow use of the SA by packets
 with any value for this selector.

 For example, suppose there is an SPD entry where the allowed value
 for source address is any of a range of hosts (192.168.2.1 to
 192.168.2.10). And suppose that a packet is to be sent that has a
 source address of 192.168.2.3. The value to be used for the SA could
 be any of the sample values below depending on what the policy entry
 for this selector says is the source of the selector value:

 source for the example of
 value to be new SAD
 used in the SA selector value
 --------------- ------------
 a. packet 192.168.2.3 (one host)
 b. SPD entry 192.168.2.1 to 192.168.2.10 (range of hosts)

 Note that if the SPD entry had an allowed value of wildcard for the
 source address, then the SAD selector value could be wildcard (any
 host). Case (a) can be used to prohibit sharing, even among packets
 that match the same SPD entry.

 As described below in Section 4.4.3, selectors may include "wildcard"
 entries and hence the selectors for two entries may overlap. (This
 is analogous to the overlap that arises with ACLs or filter entries
 in routers or packet filtering firewalls.) Thus, to ensure
 consistent, predictable processing, SPD entries MUST be ordered and
 the SPD MUST always be searched in the same order, so that the first
 matching entry is consistently selected. (This requirement is
 necessary as the effect of processing traffic against SPD entries
 must be deterministic, but there is no way to canonicalize SPD
 entries given the use of wildcards for some selectors.) More detail
 on matching of packets against SPD entries is provided in Section 5.

 Note that if ESP is specified, either (but not both) authentication
 or encryption can be omitted. So it MUST be possible to configure
 the SPD value for the authentication or encryption algorithms to be
 "NULL". However, at least one of these services MUST be selected,
 i.e., it MUST NOT be possible to configure both of them as "NULL".

 The SPD can be used to map traffic to specific SAs or SA bundles.
 Thus it can function both as the reference database for security
 policy and as the map to existing SAs (or SA bundles). (To
 accommodate the bypass and discard policies cited above, the SPD also

Kent & Atkinson Standards Track [Page 16]

RFC 2401 Security Architecture for IP November 1998

 MUST provide a means of mapping traffic to these functions, even
 though they are not, per se, IPsec processing.) The way in which the
 SPD operates is different for inbound vs. outbound traffic and it
 also may differ for host vs. security gateway, BITS, and BITW
 implementations. Sections 5.1 and 5.2 describe the use of the SPD
 for outbound and inbound processing, respectively.

 Because a security policy may require that more than one SA be
 applied to a specified set of traffic, in a specific order, the
 policy entry in the SPD must preserve these ordering requirements,
 when present. Thus, it must be possible for an IPsec implementation
 to determine that an outbound or inbound packet must be processed
 thorough a sequence of SAs. Conceptually, for outbound processing,
 one might imagine links (to the SAD) from an SPD entry for which
 there are active SAs, and each entry would consist of either a single
 SA or an ordered list of SAs that comprise an SA bundle. When a
 packet is matched against an SPD entry and there is an existing SA or
 SA bundle that can be used to carry the traffic, the processing of
 the packet is controlled by the SA or SA bundle entry on the list.
 For an inbound IPsec packet for which multiple IPsec SAs are to be
 applied, the lookup based on destination address, IPsec protocol, and
 SPI should identify a single SA.

 The SPD is used to control the flow of ALL traffic through an IPsec
 system, including security and key management traffic (e.g., ISAKMP)
 from/to entities behind a security gateway. This means that ISAKMP
 traffic must be explicitly accounted for in the SPD, else it will be
 discarded. Note that a security gateway could prohibit traversal of
 encrypted packets in various ways, e.g., having a DISCARD entry in
 the SPD for ESP packets or providing proxy key exchange. In the
 latter case, the traffic would be internally routed to the key
 management module in the security gateway.

4.4.2 Selectors

 An SA (or SA bundle) may be fine-grained or coarse-grained, depending
 on the selectors used to define the set of traffic for the SA. For
 example, all traffic between two hosts may be carried via a single
 SA, and afforded a uniform set of security services. Alternatively,
 traffic between a pair of hosts might be spread over multiple SAs,
 depending on the applications being used (as defined by the Next
 Protocol and Port fields), with different security services offered
 by different SAs. Similarly, all traffic between a pair of security
 gateways could be carried on a single SA, or one SA could be assigned
 for each communicating host pair. The following selector parameters
 MUST be supported for SA management to facilitate control of SA
 granularity. Note that in the case of receipt of a packet with an
 ESP header, e.g., at an encapsulating security gateway or BITW

Kent & Atkinson Standards Track [Page 17]

RFC 2401 Security Architecture for IP November 1998

 implementation, the transport layer protocol, source/destination
 ports, and Name (if present) may be "OPAQUE", i.e., inaccessible
 because of encryption or fragmentation. Note also that both Source
 and Destination addresses should either be IPv4 or IPv6.

 - Destination IP Address (IPv4 or IPv6): this may be a single IP
 address (unicast, anycast, broadcast (IPv4 only), or multicast
 group), a range of addresses (high and low values (inclusive),
 address + mask, or a wildcard address. The last three are used
 to support more than one destination system sharing the same SA
 (e.g., behind a security gateway). Note that this selector is
 conceptually different from the "Destination IP Address" field
 in the <Destination IP Address, IPsec Protocol, SPI> tuple used
 to uniquely identify an SA. When a tunneled packet arrives at
 the tunnel endpoint, its SPI/Destination address/Protocol are
 used to look up the SA for this packet in the SAD. This
 destination address comes from the encapsulating IP header.
 Once the packet has been processed according to the tunnel SA
 and has come out of the tunnel, its selectors are "looked up" in
 the Inbound SPD. The Inbound SPD has a selector called
 destination address. This IP destination address is the one in
 the inner (encapsulated) IP header. In the case of a
 transport’d packet, there will be only one IP header and this
 ambiguity does not exist. [REQUIRED for all implementations]

 - Source IP Address(es) (IPv4 or IPv6): this may be a single IP
 address (unicast, anycast, broadcast (IPv4 only), or multicast
 group), range of addresses (high and low values inclusive),
 address + mask, or a wildcard address. The last three are used
 to support more than one source system sharing the same SA
 (e.g., behind a security gateway or in a multihomed host).
 [REQUIRED for all implementations]

 - Name: There are 2 cases (Note that these name forms are
 supported in the IPsec DOI.)
 1. User ID
 a. a fully qualified user name string (DNS), e.g.,
 mozart@foo.bar.com
 b. X.500 distinguished name, e.g., C = US, SP = MA,
 O = GTE Internetworking, CN = Stephen T. Kent.
 2. System name (host, security gateway, etc.)
 a. a fully qualified DNS name, e.g., foo.bar.com
 b. X.500 distinguished name
 c. X.500 general name

 NOTE: One of the possible values of this selector is "OPAQUE".

Kent & Atkinson Standards Track [Page 18]

RFC 2401 Security Architecture for IP November 1998

 [REQUIRED for the following cases. Note that support for name
 forms other than addresses is not required for manually keyed
 SAs.
 o User ID
 - native host implementations
 - BITW and BITS implementations acting as HOSTS
 with only one user
 - security gateway implementations for INBOUND
 processing.
 o System names -- all implementations]

 - Data sensitivity level: (IPSO/CIPSO labels)
 [REQUIRED for all systems providing information flow security as
 per Section 8, OPTIONAL for all other systems.]

 - Transport Layer Protocol: Obtained from the IPv4 "Protocol" or
 the IPv6 "Next Header" fields. This may be an individual
 protocol number. These packet fields may not contain the
 Transport Protocol due to the presence of IP extension headers,
 e.g., a Routing Header, AH, ESP, Fragmentation Header,
 Destination Options, Hop-by-hop options, etc. Note that the
 Transport Protocol may not be available in the case of receipt
 of a packet with an ESP header, thus a value of "OPAQUE" SHOULD
 be supported.
 [REQUIRED for all implementations]

 NOTE: To locate the transport protocol, a system has to chain
 through the packet headers checking the "Protocol" or "Next
 Header" field until it encounters either one it recognizes as a
 transport protocol, or until it reaches one that isn’t on its
 list of extension headers, or until it encounters an ESP header
 that renders the transport protocol opaque.

 - Source and Destination (e.g., TCP/UDP) Ports: These may be
 individual UDP or TCP port values or a wildcard port. (The use
 of the Next Protocol field and the Source and/or Destination
 Port fields (in conjunction with the Source and/or Destination
 Address fields), as an SA selector is sometimes referred to as
 "session-oriented keying."). Note that the source and
 destination ports may not be available in the case of receipt of
 a packet with an ESP header, thus a value of "OPAQUE" SHOULD be
 supported.

 The following table summarizes the relationship between the
 "Next Header" value in the packet and SPD and the derived Port
 Selector value for the SPD and SAD.

Kent & Atkinson Standards Track [Page 19]

RFC 2401 Security Architecture for IP November 1998

 Next Hdr Transport Layer Derived Port Selector Field
 in Packet Protocol in SPD Value in SPD and SAD
 -------- --------------- ---------------------------
 ESP ESP or ANY ANY (i.e., don’t look at it)
 -don’t care- ANY ANY (i.e., don’t look at it)
 specific value specific value NOT ANY (i.e., drop packet)
 fragment
 specific value specific value actual port selector field
 not fragment

 If the packet has been fragmented, then the port information may
 not be available in the current fragment. If so, discard the
 fragment. An ICMP PMTU should be sent for the first fragment,
 which will have the port information. [MAY be supported]

 The IPsec implementation context determines how selectors are used.
 For example, a host implementation integrated into the stack may make
 use of a socket interface. When a new connection is established the
 SPD can be consulted and an SA (or SA bundle) bound to the socket.
 Thus traffic sent via that socket need not result in additional
 lookups to the SPD/SAD. In contrast, a BITS, BITW, or security
 gateway implementation needs to look at each packet and perform an
 SPD/SAD lookup based on the selectors. The allowable values for the
 selector fields differ between the traffic flow, the security
 association, and the security policy.

 The following table summarizes the kinds of entries that one needs to
 be able to express in the SPD and SAD. It shows how they relate to
 the fields in data traffic being subjected to IPsec screening.
 (Note: the "wild" or "wildcard" entry for src and dst addresses
 includes a mask, range, etc.)

 Field Traffic Value SAD Entry SPD Entry
 -------- ------------- ---------------- --------------------
 src addr single IP addr single,range,wild single,range,wildcard
 dst addr single IP addr single,range,wild single,range,wildcard
 xpt protocol* xpt protocol single,wildcard single,wildcard
 src port* single src port single,wildcard single,wildcard
 dst port* single dst port single,wildcard single,wildcard
 user id* single user id single,wildcard single,wildcard
 sec. labels single value single,wildcard single,wildcard

 * The SAD and SPD entries for these fields could be "OPAQUE"
 because the traffic value is encrypted.

 NOTE: In principle, one could have selectors and/or selector values
 in the SPD which cannot be negotiated for an SA or SA bundle.
 Examples might include selector values used to select traffic for

Kent & Atkinson Standards Track [Page 20]

RFC 2401 Security Architecture for IP November 1998

 discarding or enumerated lists which cause a separate SA to be
 created for each item on the list. For now, this is left for future
 versions of this document and the list of required selectors and
 selector values is the same for the SPD and the SAD. However, it is
 acceptable to have an administrative interface that supports use of
 selector values which cannot be negotiated provided that it does not
 mislead the user into believing it is creating an SA with these
 selector values. For example, the interface may allow the user to
 specify an enumerated list of values but would result in the creation
 of a separate policy and SA for each item on the list. A vendor
 might support such an interface to make it easier for its customers
 to specify clear and concise policy specifications.

4.4.3 Security Association Database (SAD)

 In each IPsec implementation there is a nominal Security Association
 Database, in which each entry defines the parameters associated with
 one SA. Each SA has an entry in the SAD. For outbound processing,
 entries are pointed to by entries in the SPD. Note that if an SPD
 entry does not currently point to an SA that is appropriate for the
 packet, the implementation creates an appropriate SA (or SA Bundle)
 and links the SPD entry to the SAD entry (see Section 5.1.1). For
 inbound processing, each entry in the SAD is indexed by a destination
 IP address, IPsec protocol type, and SPI. The following parameters
 are associated with each entry in the SAD. This description does not
 purport to be a MIB, but only a specification of the minimal data
 items required to support an SA in an IPsec implementation.

 For inbound processing: The following packet fields are used to look
 up the SA in the SAD:

 o Outer Header’s Destination IP address: the IPv4 or IPv6
 Destination address.
 [REQUIRED for all implementations]
 o IPsec Protocol: AH or ESP, used as an index for SA lookup
 in this database. Specifies the IPsec protocol to be
 applied to the traffic on this SA.
 [REQUIRED for all implementations]
 o SPI: the 32-bit value used to distinguish among different
 SAs terminating at the same destination and using the same
 IPsec protocol.
 [REQUIRED for all implementations]

 For each of the selectors defined in Section 4.4.2, the SA entry in
 the SAD MUST contain the value or values which were negotiated at the
 time the SA was created. For the sender, these values are used to
 decide whether a given SA is appropriate for use with an outbound
 packet. This is part of checking to see if there is an existing SA

Kent & Atkinson Standards Track [Page 21]

RFC 2401 Security Architecture for IP November 1998

 that can be used. For the receiver, these values are used to check
 that the selector values in an inbound packet match those for the SA
 (and thus indirectly those for the matching policy). For the
 receiver, this is part of verifying that the SA was appropriate for
 this packet. (See Section 6 for rules for ICMP messages.) These
 fields can have the form of specific values, ranges, wildcards, or
 "OPAQUE" as described in section 4.4.2, "Selectors". Note that for
 an ESP SA, the encryption algorithm or the authentication algorithm
 could be "NULL". However they MUST not both be "NULL".

 The following SAD fields are used in doing IPsec processing:

 o Sequence Number Counter: a 32-bit value used to generate the
 Sequence Number field in AH or ESP headers.
 [REQUIRED for all implementations, but used only for outbound
 traffic.]
 o Sequence Counter Overflow: a flag indicating whether overflow
 of the Sequence Number Counter should generate an auditable
 event and prevent transmission of additional packets on the
 SA.
 [REQUIRED for all implementations, but used only for outbound
 traffic.]
 o Anti-Replay Window: a 32-bit counter and a bit-map (or
 equivalent) used to determine whether an inbound AH or ESP
 packet is a replay.
 [REQUIRED for all implementations but used only for inbound
 traffic. NOTE: If anti-replay has been disabled by the
 receiver, e.g., in the case of a manually keyed SA, then the
 Anti-Replay Window is not used.]
 o AH Authentication algorithm, keys, etc.
 [REQUIRED for AH implementations]
 o ESP Encryption algorithm, keys, IV mode, IV, etc.
 [REQUIRED for ESP implementations]
 o ESP authentication algorithm, keys, etc. If the
 authentication service is not selected, this field will be
 null.
 [REQUIRED for ESP implementations]
 o Lifetime of this Security Association: a time interval after
 which an SA must be replaced with a new SA (and new SPI) or
 terminated, plus an indication of which of these actions
 should occur. This may be expressed as a time or byte count,
 or a simultaneous use of both, the first lifetime to expire
 taking precedence. A compliant implementation MUST support
 both types of lifetimes, and must support a simultaneous use
 of both. If time is employed, and if IKE employs X.509
 certificates for SA establishment, the SA lifetime must be
 constrained by the validity intervals of the certificates,
 and the NextIssueDate of the CRLs used in the IKE exchange

Kent & Atkinson Standards Track [Page 22]

RFC 2401 Security Architecture for IP November 1998

 for the SA. Both initiator and responder are responsible for
 constraining SA lifetime in this fashion.
 [REQUIRED for all implementations]

 NOTE: The details of how to handle the refreshing of keys
 when SAs expire is a local matter. However, one reasonable
 approach is:
 (a) If byte count is used, then the implementation
 SHOULD count the number of bytes to which the IPsec
 algorithm is applied. For ESP, this is the encryption
 algorithm (including Null encryption) and for AH,
 this is the authentication algorithm. This includes
 pad bytes, etc. Note that implementations SHOULD be
 able to handle having the counters at the ends of an
 SA get out of synch, e.g., because of packet loss or
 because the implementations at each end of the SA
 aren’t doing things the same way.
 (b) There SHOULD be two kinds of lifetime -- a soft
 lifetime which warns the implementation to initiate
 action such as setting up a replacement SA and a
 hard lifetime when the current SA ends.
 (c) If the entire packet does not get delivered during
 the SAs lifetime, the packet SHOULD be discarded.

 o IPsec protocol mode: tunnel, transport or wildcard.
 Indicates which mode of AH or ESP is applied to traffic on
 this SA. Note that if this field is "wildcard" at the
 sending end of the SA, then the application has to specify
 the mode to the IPsec implementation. This use of wildcard
 allows the same SA to be used for either tunnel or transport
 mode traffic on a per packet basis, e.g., by different
 sockets. The receiver does not need to know the mode in
 order to properly process the packet’s IPsec headers.

 [REQUIRED as follows, unless implicitly defined by context:
 - host implementations must support all modes
 - gateway implementations must support tunnel mode]

 NOTE: The use of wildcard for the protocol mode of an inbound
 SA may add complexity to the situation in the receiver (host
 only). Since the packets on such an SA could be delivered in
 either tunnel or transport mode, the security of an incoming
 packet could depend in part on which mode had been used to
 deliver it. If, as a result, an application cared about the
 SA mode of a given packet, then the application would need a
 mechanism to obtain this mode information.

Kent & Atkinson Standards Track [Page 23]

RFC 2401 Security Architecture for IP November 1998

 o Path MTU: any observed path MTU and aging variables. See
 Section 6.1.2.4
 [REQUIRED for all implementations but used only for outbound
 traffic]

4.5 Basic Combinations of Security Associations

 This section describes four examples of combinations of security
 associations that MUST be supported by compliant IPsec hosts or
 security gateways. Additional combinations of AH and/or ESP in
 tunnel and/or transport modes MAY be supported at the discretion of
 the implementor. Compliant implementations MUST be capable of
 generating these four combinations and on receipt, of processing
 them, but SHOULD be able to receive and process any combination. The
 diagrams and text below describe the basic cases. The legend for the
 diagrams is:

 ==== = one or more security associations (AH or ESP, transport
 or tunnel)
 ---- = connectivity (or if so labelled, administrative boundary)
 Hx = host x
 SGx = security gateway x
 X* = X supports IPsec

 NOTE: The security associations below can be either AH or ESP. The
 mode (tunnel vs transport) is determined by the nature of the
 endpoints. For host-to-host SAs, the mode can be either transport or
 tunnel.

 Case 1. The case of providing end-to-end security between 2 hosts
 across the Internet (or an Intranet).

 ====================================
 | |
 H1* ------ (Inter/Intranet) ------ H2*

 Note that either transport or tunnel mode can be selected by the
 hosts. So the headers in a packet between H1 and H2 could look
 like any of the following:

 Transport Tunnel
 ----------------- ---------------------
 1. [IP1][AH][upper] 4. [IP2][AH][IP1][upper]
 2. [IP1][ESP][upper] 5. [IP2][ESP][IP1][upper]
 3. [IP1][AH][ESP][upper]

Kent & Atkinson Standards Track [Page 24]

RFC 2401 Security Architecture for IP November 1998

 Note that there is no requirement to support general nesting,
 but in transport mode, both AH and ESP can be applied to the
 packet. In this event, the SA establishment procedure MUST
 ensure that first ESP, then AH are applied to the packet.

 Case 2. This case illustrates simple virtual private networks
 support.

 ===========================
 | |
 ---------------------|---- ---|-----------------------
H1 -- (Local --- SG1*	--- (Internet) ---	SG2* --- (Local --- H2		
Intranet)		Intranet)		
 -------------------------- ---------------------------
 admin. boundary admin. boundary

 Only tunnel mode is required here. So the headers in a packet
 between SG1 and SG2 could look like either of the following:

 Tunnel

 4. [IP2][AH][IP1][upper]
 5. [IP2][ESP][IP1][upper]

 Case 3. This case combines cases 1 and 2, adding end-to-end security
 between the sending and receiving hosts. It imposes no new
 requirements on the hosts or security gateways, other than a
 requirement for a security gateway to be configurable to pass
 IPsec traffic (including ISAKMP traffic) for hosts behind it.

 ===
 | |
 | ========================= |
 | | | |
 ---|-----------------|---- ---|-------------------|---
H1* -- (Local --- SG1*	-- (Internet) --	SG2* --- (Local --- H2*				
Intranet)		Intranet)				
 -------------------------- ---------------------------
 admin. boundary admin. boundary

 Case 4. This covers the situation where a remote host (H1) uses the
 Internet to reach an organization’s firewall (SG2) and to then
 gain access to some server or other machine (H2). The remote
 host could be a mobile host (H1) dialing up to a local PPP/ARA
 server (not shown) on the Internet and then crossing the
 Internet to the home organization’s firewall (SG2), etc. The

Kent & Atkinson Standards Track [Page 25]

RFC 2401 Security Architecture for IP November 1998

 details of support for this case, (how H1 locates SG2,
 authenticates it, and verifies its authorization to represent
 H2) are discussed in Section 4.6.3, "Locating a Security
 Gateway".

 ==
 | |
 |============================== |
 || | |
 || ---|----------------------|---
 || | | | |
 H1* ----- (Internet) ------| SG2* ---- (Local ----- H2* |
 ^ | Intranet) |
 | ------------------------------
 could be dialup admin. boundary (optional)
 to PPP/ARA server

 Only tunnel mode is required between H1 and SG2. So the choices
 for the SA between H1 and SG2 would be one of the ones in case
 2. The choices for the SA between H1 and H2 would be one of the
 ones in case 1.

 Note that in this case, the sender MUST apply the transport
 header before the tunnel header. Therefore the management
 interface to the IPsec implementation MUST support configuration
 of the SPD and SAD to ensure this ordering of IPsec header
 application.

 As noted above, support for additional combinations of AH and ESP is
 optional. Use of other, optional combinations may adversely affect
 interoperability.

4.6 SA and Key Management

 IPsec mandates support for both manual and automated SA and
 cryptographic key management. The IPsec protocols, AH and ESP, are
 largely independent of the associated SA management techniques,
 although the techniques involved do affect some of the security
 services offered by the protocols. For example, the optional anti-
 replay services available for AH and ESP require automated SA
 management. Moreover, the granularity of key distribution employed
 with IPsec determines the granularity of authentication provided.
 (See also a discussion of this issue in Section 4.7.) In general,
 data origin authentication in AH and ESP is limited by the extent to
 which secrets used with the authentication algorithm (or with a key
 management protocol that creates such secrets) are shared among
 multiple possible sources.

Kent & Atkinson Standards Track [Page 26]

RFC 2401 Security Architecture for IP November 1998

 The following text describes the minimum requirements for both types
 of SA management.

4.6.1 Manual Techniques

 The simplest form of management is manual management, in which a
 person manually configures each system with keying material and
 security association management data relevant to secure communication
 with other systems. Manual techniques are practical in small, static
 environments but they do not scale well. For example, a company
 could create a Virtual Private Network (VPN) using IPsec in security
 gateways at several sites. If the number of sites is small, and
 since all the sites come under the purview of a single administrative
 domain, this is likely to be a feasible context for manual management
 techniques. In this case, the security gateway might selectively
 protect traffic to and from other sites within the organization using
 a manually configured key, while not protecting traffic for other
 destinations. It also might be appropriate when only selected
 communications need to be secured. A similar argument might apply to
 use of IPsec entirely within an organization for a small number of
 hosts and/or gateways. Manual management techniques often employ
 statically configured, symmetric keys, though other options also
 exist.

4.6.2 Automated SA and Key Management

 Widespread deployment and use of IPsec requires an Internet-standard,
 scalable, automated, SA management protocol. Such support is
 required to facilitate use of the anti-replay features of AH and ESP,
 and to accommodate on-demand creation of SAs, e.g., for user- and
 session-oriented keying. (Note that the notion of "rekeying" an SA
 actually implies creation of a new SA with a new SPI, a process that
 generally implies use of an automated SA/key management protocol.)

 The default automated key management protocol selected for use with
 IPsec is IKE [MSST97, Orm97, HC98] under the IPsec domain of
 interpretation [Pip98]. Other automated SA management protocols MAY
 be employed.

 When an automated SA/key management protocol is employed, the output
 from this protocol may be used to generate multiple keys, e.g., for a
 single ESP SA. This may arise because:

 o the encryption algorithm uses multiple keys (e.g., triple DES)
 o the authentication algorithm uses multiple keys
 o both encryption and authentication algorithms are employed

Kent & Atkinson Standards Track [Page 27]

RFC 2401 Security Architecture for IP November 1998

 The Key Management System may provide a separate string of bits for
 each key or it may generate one string of bits from which all of them
 are extracted. If a single string of bits is provided, care needs to
 be taken to ensure that the parts of the system that map the string
 of bits to the required keys do so in the same fashion at both ends
 of the SA. To ensure that the IPsec implementations at each end of
 the SA use the same bits for the same keys, and irrespective of which
 part of the system divides the string of bits into individual keys,
 the encryption key(s) MUST be taken from the first (left-most, high-
 order) bits and the authentication key(s) MUST be taken from the
 remaining bits. The number of bits for each key is defined in the
 relevant algorithm specification RFC. In the case of multiple
 encryption keys or multiple authentication keys, the specification
 for the algorithm must specify the order in which they are to be
 selected from a single string of bits provided to the algorithm.

4.6.3 Locating a Security Gateway

 This section discusses issues relating to how a host learns about the
 existence of relevant security gateways and once a host has contacted
 these security gateways, how it knows that these are the correct
 security gateways. The details of where the required information is
 stored is a local matter.

 Consider a situation in which a remote host (H1) is using the
 Internet to gain access to a server or other machine (H2) and there
 is a security gateway (SG2), e.g., a firewall, through which H1’s
 traffic must pass. An example of this situation would be a mobile
 host (Road Warrior) crossing the Internet to the home organization’s
 firewall (SG2). (See Case 4 in the section 4.5 Basic Combinations of
 Security Associations.) This situation raises several issues:

 1. How does H1 know/learn about the existence of the security
 gateway SG2?
 2. How does it authenticate SG2, and once it has authenticated
 SG2, how does it confirm that SG2 has been authorized to
 represent H2?
 3. How does SG2 authenticate H1 and verify that H1 is authorized
 to contact H2?
 4. How does H1 know/learn about backup gateways which provide
 alternate paths to H2?

 To address these problems, a host or security gateway MUST have an
 administrative interface that allows the user/administrator to
 configure the address of a security gateway for any sets of
 destination addresses that require its use. This includes the ability
 to configure:

Kent & Atkinson Standards Track [Page 28]

RFC 2401 Security Architecture for IP November 1998

 o the requisite information for locating and authenticating the
 security gateway and verifying its authorization to represent
 the destination host.
 o the requisite information for locating and authenticating any
 backup gateways and verifying their authorization to represent
 the destination host.

 It is assumed that the SPD is also configured with policy information
 that covers any other IPsec requirements for the path to the security
 gateway and the destination host.

 This document does not address the issue of how to automate the
 discovery/verification of security gateways.

4.7 Security Associations and Multicast

 The receiver-orientation of the Security Association implies that, in
 the case of unicast traffic, the destination system will normally
 select the SPI value. By having the destination select the SPI
 value, there is no potential for manually configured Security
 Associations to conflict with automatically configured (e.g., via a
 key management protocol) Security Associations or for Security
 Associations from multiple sources to conflict with each other. For
 multicast traffic, there are multiple destination systems per
 multicast group. So some system or person will need to coordinate
 among all multicast groups to select an SPI or SPIs on behalf of each
 multicast group and then communicate the group’s IPsec information to
 all of the legitimate members of that multicast group via mechanisms
 not defined here.

 Multiple senders to a multicast group SHOULD use a single Security
 Association (and hence Security Parameter Index) for all traffic to
 that group when a symmetric key encryption or authentication
 algorithm is employed. In such circumstances, the receiver knows only
 that the message came from a system possessing the key for that
 multicast group. In such circumstances, a receiver generally will
 not be able to authenticate which system sent the multicast traffic.
 Specifications for other, more general multicast cases are deferred
 to later IPsec documents.

 At the time this specification was published, automated protocols for
 multicast key distribution were not considered adequately mature for
 standardization. For multicast groups having relatively few members,
 manual key distribution or multiple use of existing unicast key
 distribution algorithms such as modified Diffie-Hellman appears
 feasible. For very large groups, new scalable techniques will be
 needed. An example of current work in this area is the Group Key
 Management Protocol (GKMP) [HM97].

Kent & Atkinson Standards Track [Page 29]

RFC 2401 Security Architecture for IP November 1998

5. IP Traffic Processing

 As mentioned in Section 4.4.1 "The Security Policy Database (SPD)",
 the SPD must be consulted during the processing of all traffic
 (INBOUND and OUTBOUND), including non-IPsec traffic. If no policy is
 found in the SPD that matches the packet (for either inbound or
 outbound traffic), the packet MUST be discarded.

 NOTE: All of the cryptographic algorithms used in IPsec expect their
 input in canonical network byte order (see Appendix in RFC 791) and
 generate their output in canonical network byte order. IP packets
 are also transmitted in network byte order.

5.1 Outbound IP Traffic Processing

5.1.1 Selecting and Using an SA or SA Bundle

 In a security gateway or BITW implementation (and in many BITS
 implementations), each outbound packet is compared against the SPD to
 determine what processing is required for the packet. If the packet
 is to be discarded, this is an auditable event. If the traffic is
 allowed to bypass IPsec processing, the packet continues through
 "normal" processing for the environment in which the IPsec processing
 is taking place. If IPsec processing is required, the packet is
 either mapped to an existing SA (or SA bundle), or a new SA (or SA
 bundle) is created for the packet. Since a packet’s selectors might
 match multiple policies or multiple extant SAs and since the SPD is
 ordered, but the SAD is not, IPsec MUST:

 1. Match the packet’s selector fields against the outbound
 policies in the SPD to locate the first appropriate
 policy, which will point to zero or more SA bundles in the
 SAD.

 2. Match the packet’s selector fields against those in the SA
 bundles found in (1) to locate the first SA bundle that
 matches. If no SAs were found or none match, create an
 appropriate SA bundle and link the SPD entry to the SAD
 entry. If no key management entity is found, drop the
 packet.

 3. Use the SA bundle found/created in (2) to do the required
 IPsec processing, e.g., authenticate and encrypt.

 In a host IPsec implementation based on sockets, the SPD will be
 consulted whenever a new socket is created, to determine what, if
 any, IPsec processing will be applied to the traffic that will flow
 on that socket.

Kent & Atkinson Standards Track [Page 30]

RFC 2401 Security Architecture for IP November 1998

 NOTE: A compliant implementation MUST not allow instantiation of an
 ESP SA that employs both a NULL encryption and a NULL authentication
 algorithm. An attempt to negotiate such an SA is an auditable event.

5.1.2 Header Construction for Tunnel Mode

 This section describes the handling of the inner and outer IP
 headers, extension headers, and options for AH and ESP tunnels. This
 includes how to construct the encapsulating (outer) IP header, how to
 handle fields in the inner IP header, and what other actions should
 be taken. The general idea is modeled after the one used in RFC
 2003, "IP Encapsulation with IP":

 o The outer IP header Source Address and Destination Address
 identify the "endpoints" of the tunnel (the encapsulator and
 decapsulator). The inner IP header Source Address and
 Destination Addresses identify the original sender and
 recipient of the datagram, (from the perspective of this
 tunnel), respectively. (see footnote 3 after the table in
 5.1.2.1 for more details on the encapsulating source IP
 address.)
 o The inner IP header is not changed except to decrement the TTL
 as noted below, and remains unchanged during its delivery to
 the tunnel exit point.
 o No change to IP options or extension headers in the inner
 header occurs during delivery of the encapsulated datagram
 through the tunnel.
 o If need be, other protocol headers such as the IP
 Authentication header may be inserted between the outer IP
 header and the inner IP header.

 The tables in the following sub-sections show the handling for the
 different header/option fields (constructed = the value in the outer
 field is constructed independently of the value in the inner).

5.1.2.1 IPv4 -- Header Construction for Tunnel Mode

 <-- How Outer Hdr Relates to Inner Hdr -->
 Outer Hdr at Inner Hdr at
 IPv4 Encapsulator Decapsulator
 Header fields: -------------------- ------------
 version 4 (1) no change
 header length constructed no change
 TOS copied from inner hdr (5) no change
 total length constructed no change
 ID constructed no change
 flags (DF,MF) constructed, DF (4) no change
 fragmt offset constructed no change

Kent & Atkinson Standards Track [Page 31]

RFC 2401 Security Architecture for IP November 1998

 TTL constructed (2) decrement (2)
 protocol AH, ESP, routing hdr no change
 checksum constructed constructed (2)
 src address constructed (3) no change
 dest address constructed (3) no change
 Options never copied no change

 1. The IP version in the encapsulating header can be different
 from the value in the inner header.

 2. The TTL in the inner header is decremented by the
 encapsulator prior to forwarding and by the decapsulator if
 it forwards the packet. (The checksum changes when the TTL
 changes.)

 Note: The decrementing of the TTL is one of the usual actions
 that takes place when forwarding a packet. Packets
 originating from the same node as the encapsulator do not
 have their TTL’s decremented, as the sending node is
 originating the packet rather than forwarding it.

 3. src and dest addresses depend on the SA, which is used to
 determine the dest address which in turn determines which src
 address (net interface) is used to forward the packet.

 NOTE: In principle, the encapsulating IP source address can
 be any of the encapsulator’s interface addresses or even an
 address different from any of the encapsulator’s IP
 addresses, (e.g., if it’s acting as a NAT box) so long as the
 address is reachable through the encapsulator from the
 environment into which the packet is sent. This does not
 cause a problem because IPsec does not currently have any
 INBOUND processing requirement that involves the Source
 Address of the encapsulating IP header. So while the
 receiving tunnel endpoint looks at the Destination Address in
 the encapsulating IP header, it only looks at the Source
 Address in the inner (encapsulated) IP header.

 4. configuration determines whether to copy from the inner
 header (IPv4 only), clear or set the DF.

 5. If Inner Hdr is IPv4 (Protocol = 4), copy the TOS. If Inner
 Hdr is IPv6 (Protocol = 41), map the Class to TOS.

5.1.2.2 IPv6 -- Header Construction for Tunnel Mode

 See previous section 5.1.2 for notes 1-5 indicated by (footnote
 number).

Kent & Atkinson Standards Track [Page 32]

RFC 2401 Security Architecture for IP November 1998

 <-- How Outer Hdr Relates Inner Hdr --->
 Outer Hdr at Inner Hdr at
 IPv6 Encapsulator Decapsulator
 Header fields: -------------------- ------------
 version 6 (1) no change
 class copied or configured (6) no change
 flow id copied or configured no change
 len constructed no change
 next header AH,ESP,routing hdr no change
 hop limit constructed (2) decrement (2)
 src address constructed (3) no change
 dest address constructed (3) no change
 Extension headers never copied no change

 6. If Inner Hdr is IPv6 (Next Header = 41), copy the Class. If
 Inner Hdr is IPv4 (Next Header = 4), map the TOS to Class.

5.2 Processing Inbound IP Traffic

 Prior to performing AH or ESP processing, any IP fragments are
 reassembled. Each inbound IP datagram to which IPsec processing will
 be applied is identified by the appearance of the AH or ESP values in
 the IP Next Protocol field (or of AH or ESP as an extension header in
 the IPv6 context).

 Note: Appendix C contains sample code for a bitmask check for a 32
 packet window that can be used for implementing anti-replay service.

5.2.1 Selecting and Using an SA or SA Bundle

 Mapping the IP datagram to the appropriate SA is simplified because
 of the presence of the SPI in the AH or ESP header. Note that the
 selector checks are made on the inner headers not the outer (tunnel)
 headers. The steps followed are:

 1. Use the packet’s destination address (outer IP header),
 IPsec protocol, and SPI to look up the SA in the SAD. If
 the SA lookup fails, drop the packet and log/report the
 error.

 2. Use the SA found in (1) to do the IPsec processing, e.g.,
 authenticate and decrypt. This step includes matching the
 packet’s (Inner Header if tunneled) selectors to the
 selectors in the SA. Local policy determines the
 specificity of the SA selectors (single value, list,
 range, wildcard). In general, a packet’s source address
 MUST match the SA selector value. However, an ICMP packet
 received on a tunnel mode SA may have a source address

Kent & Atkinson Standards Track [Page 33]

RFC 2401 Security Architecture for IP November 1998

 other than that bound to the SA and thus such packets
 should be permitted as exceptions to this check. For an
 ICMP packet, the selectors from the enclosed problem
 packet (the source and destination addresses and ports
 should be swapped) should be checked against the selectors
 for the SA. Note that some or all of these selectors may
 be inaccessible because of limitations on how many bits of
 the problem packet the ICMP packet is allowed to carry or
 due to encryption. See Section 6.

 Do (1) and (2) for every IPsec header until a Transport
 Protocol Header or an IP header that is NOT for this
 system is encountered. Keep track of what SAs have been
 used and their order of application.

 3. Find an incoming policy in the SPD that matches the
 packet. This could be done, for example, by use of
 backpointers from the SAs to the SPD or by matching the
 packet’s selectors (Inner Header if tunneled) against
 those of the policy entries in the SPD.

 4. Check whether the required IPsec processing has been
 applied, i.e., verify that the SA’s found in (1) and (2)
 match the kind and order of SAs required by the policy
 found in (3).

 NOTE: The correct "matching" policy will not necessarily
 be the first inbound policy found. If the check in (4)
 fails, steps (3) and (4) are repeated until all policy
 entries have been checked or until the check succeeds.

 At the end of these steps, pass the resulting packet to the Transport
 Layer or forward the packet. Note that any IPsec headers processed
 in these steps may have been removed, but that this information,
 i.e., what SAs were used and the order of their application, may be
 needed for subsequent IPsec or firewall processing.

 Note that in the case of a security gateway, if forwarding causes a
 packet to exit via an IPsec-enabled interface, then additional IPsec
 processing may be applied.

5.2.2 Handling of AH and ESP tunnels

 The handling of the inner and outer IP headers, extension headers,
 and options for AH and ESP tunnels should be performed as described
 in the tables in Section 5.1.

Kent & Atkinson Standards Track [Page 34]

RFC 2401 Security Architecture for IP November 1998

6. ICMP Processing (relevant to IPsec)

 The focus of this section is on the handling of ICMP error messages.
 Other ICMP traffic, e.g., Echo/Reply, should be treated like other
 traffic and can be protected on an end-to-end basis using SAs in the
 usual fashion.

 An ICMP error message protected by AH or ESP and generated by a
 router SHOULD be processed and forwarded in a tunnel mode SA. Local
 policy determines whether or not it is subjected to source address
 checks by the router at the destination end of the tunnel. Note that
 if the router at the originating end of the tunnel is forwarding an
 ICMP error message from another router, the source address check
 would fail. An ICMP message protected by AH or ESP and generated by
 a router MUST NOT be forwarded on a transport mode SA (unless the SA
 has been established to the router acting as a host, e.g., a Telnet
 connection used to manage a router). An ICMP message generated by a
 host SHOULD be checked against the source IP address selectors bound
 to the SA in which the message arrives. Note that even if the source
 of an ICMP error message is authenticated, the returned IP header
 could be invalid. Accordingly, the selector values in the IP header
 SHOULD also be checked to be sure that they are consistent with the
 selectors for the SA over which the ICMP message was received.

 The table in Appendix D characterize ICMP messages as being either
 host generated, router generated, both, unknown/unassigned. ICMP
 messages falling into the last two categories should be handled as
 determined by the receiver’s policy.

 An ICMP message not protected by AH or ESP is unauthenticated and its
 processing and/or forwarding may result in denial of service. This
 suggests that, in general, it would be desirable to ignore such
 messages. However, it is expected that many routers (vs. security
 gateways) will not implement IPsec for transit traffic and thus
 strict adherence to this rule would cause many ICMP messages to be
 discarded. The result is that some critical IP functions would be
 lost, e.g., redirection and PMTU processing. Thus it MUST be
 possible to configure an IPsec implementation to accept or reject
 (router) ICMP traffic as per local security policy.

 The remainder of this section addresses how PMTU processing MUST be
 performed at hosts and security gateways. It addresses processing of
 both authenticated and unauthenticated ICMP PMTU messages. However,
 as noted above, unauthenticated ICMP messages MAY be discarded based
 on local policy.

Kent & Atkinson Standards Track [Page 35]

RFC 2401 Security Architecture for IP November 1998

6.1 PMTU/DF Processing

6.1.1 DF Bit

 In cases where a system (host or gateway) adds an encapsulating
 header (ESP tunnel or AH tunnel), it MUST support the option of
 copying the DF bit from the original packet to the encapsulating
 header (and processing ICMP PMTU messages). This means that it MUST
 be possible to configure the system’s treatment of the DF bit (set,
 clear, copy from encapsulated header) for each interface. (See
 Appendix B for rationale.)

6.1.2 Path MTU Discovery (PMTU)

 This section discusses IPsec handling for Path MTU Discovery
 messages. ICMP PMTU is used here to refer to an ICMP message for:

 IPv4 (RFC 792):
 - Type = 3 (Destination Unreachable)
 - Code = 4 (Fragmentation needed and DF set)
 - Next-Hop MTU in the low-order 16 bits of the second
 word of the ICMP header (labelled "unused" in RFC
 792), with high-order 16 bits set to zero

 IPv6 (RFC 1885):
 - Type = 2 (Packet Too Big)
 - Code = 0 (Fragmentation needed)
 - Next-Hop MTU in the 32 bit MTU field of the ICMP6
 message

6.1.2.1 Propagation of PMTU

 The amount of information returned with the ICMP PMTU message (IPv4
 or IPv6) is limited and this affects what selectors are available for
 use in further propagating the PMTU information. (See Appendix B for
 more detailed discussion of this topic.)

 o PMTU message with 64 bits of IPsec header -- If the ICMP PMTU
 message contains only 64 bits of the IPsec header (minimum for
 IPv4), then a security gateway MUST support the following options
 on a per SPI/SA basis:

 a. if the originating host can be determined (or the possible
 sources narrowed down to a manageable number), send the PM
 information to all the possible originating hosts.
 b. if the originating host cannot be determined, store the PMTU
 with the SA and wait until the next packet(s) arrive from the
 originating host for the relevant security association. If

Kent & Atkinson Standards Track [Page 36]

RFC 2401 Security Architecture for IP November 1998

 the packet(s) are bigger than the PMTU, drop the packet(s),
 and compose ICMP PMTU message(s) with the new packet(s) and
 the updated PMTU, and send the ICMP message(s) about the
 problem to the originating host. Retain the PMTU information
 for any message that might arrive subsequently (see Section
 6.1.2.4, "PMTU Aging").

 o PMTU message with >64 bits of IPsec header -- If the ICMP message
 contains more information from the original packet then there may
 be enough non-opaque information to immediately determine to which
 host to propagate the ICMP/PMTU message and to provide that system
 with the 5 fields (source address, destination address, source
 port, destination port, transport protocol) needed to determine
 where to store/update the PMTU. Under such circumstances, a
 security gateway MUST generate an ICMP PMTU message immediately
 upon receipt of an ICMP PMTU from further down the path.

 o Distributing the PMTU to the Transport Layer -- The host mechanism
 for getting the updated PMTU to the transport layer is unchanged,
 as specified in RFC 1191 (Path MTU Discovery).

6.1.2.2 Calculation of PMTU

 The calculation of PMTU from an ICMP PMTU MUST take into account the
 addition of any IPsec header -- AH transport, ESP transport, AH/ESP
 transport, ESP tunnel, AH tunnel. (See Appendix B for discussion of
 implementation issues.)

 Note: In some situations the addition of IPsec headers could result
 in an effective PMTU (as seen by the host or application) that is
 unacceptably small. To avoid this problem, the implementation may
 establish a threshold below which it will not report a reduced PMTU.
 In such cases, the implementation would apply IPsec and then fragment
 the resulting packet according to the PMTU. This would result in a
 more efficient use of the available bandwidth.

6.1.2.3 Granularity of PMTU Processing

 In hosts, the granularity with which ICMP PMTU processing can be done
 differs depending on the implementation situation. Looking at a
 host, there are 3 situations that are of interest with respect to
 PMTU issues (See Appendix B for additional details on this topic.):

 a. Integration of IPsec into the native IP implementation
 b. Bump-in-the-stack implementations, where IPsec is implemented
 "underneath" an existing implementation of a TCP/IP protocol
 stack, between the native IP and the local network drivers

Kent & Atkinson Standards Track [Page 37]

RFC 2401 Security Architecture for IP November 1998

 c. No IPsec implementation -- This case is included because it
 is relevant in cases where a security gateway is sending PMTU
 information back to a host.

 Only in case (a) can the PMTU data be maintained at the same
 granularity as communication associations. In (b) and (c), the IP
 layer will only be able to maintain PMTU data at the granularity of
 source and destination IP addresses (and optionally TOS), as
 described in RFC 1191. This is an important difference, because more
 than one communication association may map to the same source and
 destination IP addresses, and each communication association may have
 a different amount of IPsec header overhead (e.g., due to use of
 different transforms or different algorithms).

 Implementation of the calculation of PMTU and support for PMTUs at
 the granularity of individual communication associations is a local
 matter. However, a socket-based implementation of IPsec in a host
 SHOULD maintain the information on a per socket basis. Bump in the
 stack systems MUST pass an ICMP PMTU to the host IP implementation,
 after adjusting it for any IPsec header overhead added by these
 systems. The calculation of the overhead SHOULD be determined by
 analysis of the SPI and any other selector information present in a
 returned ICMP PMTU message.

6.1.2.4 PMTU Aging

 In all systems (host or gateway) implementing IPsec and maintaining
 PMTU information, the PMTU associated with a security association
 (transport or tunnel) MUST be "aged" and some mechanism put in place
 for updating the PMTU in a timely manner, especially for discovering
 if the PMTU is smaller than it needs to be. A given PMTU has to
 remain in place long enough for a packet to get from the source end
 of the security association to the system at the other end of the
 security association and propagate back an ICMP error message if the
 current PMTU is too big. Note that if there are nested tunnels,
 multiple packets and round trip times might be required to get an
 ICMP message back to an encapsulator or originating host.

 Systems SHOULD use the approach described in the Path MTU Discovery
 document (RFC 1191, Section 6.3), which suggests periodically
 resetting the PMTU to the first-hop data-link MTU and then letting
 the normal PMTU Discovery processes update the PMTU as necessary.
 The period SHOULD be configurable.

Kent & Atkinson Standards Track [Page 38]

RFC 2401 Security Architecture for IP November 1998

7. Auditing

 Not all systems that implement IPsec will implement auditing. For
 the most part, the granularity of auditing is a local matter.
 However, several auditable events are identified in the AH and ESP
 specifications and for each of these events a minimum set of
 information that SHOULD be included in an audit log is defined.
 Additional information also MAY be included in the audit log for each
 of these events, and additional events, not explicitly called out in
 this specification, also MAY result in audit log entries. There is
 no requirement for the receiver to transmit any message to the
 purported transmitter in response to the detection of an auditable
 event, because of the potential to induce denial of service via such
 action.

8. Use in Systems Supporting Information Flow Security

 Information of various sensitivity levels may be carried over a
 single network. Information labels (e.g., Unclassified, Company
 Proprietary, Secret) [DoD85, DoD87] are often employed to distinguish
 such information. The use of labels facilitates segregation of
 information, in support of information flow security models, e.g.,
 the Bell-LaPadula model [BL73]. Such models, and corresponding
 supporting technology, are designed to prevent the unauthorized flow
 of sensitive information, even in the face of Trojan Horse attacks.
 Conventional, discretionary access control (DAC) mechanisms, e.g.,
 based on access control lists, generally are not sufficient to
 support such policies, and thus facilities such as the SPD do not
 suffice in such environments.

 In the military context, technology that supports such models is
 often referred to as multi-level security (MLS). Computers and
 networks often are designated "multi-level secure" if they support
 the separation of labelled data in conjunction with information flow
 security policies. Although such technology is more broadly
 applicable than just military applications, this document uses the
 acronym "MLS" to designate the technology, consistent with much
 extant literature.

 IPsec mechanisms can easily support MLS networking. MLS networking
 requires the use of strong Mandatory Access Controls (MAC), which
 unprivileged users or unprivileged processes are incapable of
 controlling or violating. This section pertains only to the use of
 these IP security mechanisms in MLS (information flow security
 policy) environments. Nothing in this section applies to systems not
 claiming to provide MLS.

Kent & Atkinson Standards Track [Page 39]

RFC 2401 Security Architecture for IP November 1998

 As used in this section, "sensitivity information" might include
 implementation-defined hierarchic levels, categories, and/or
 releasability information.

 AH can be used to provide strong authentication in support of
 mandatory access control decisions in MLS environments. If explicit
 IP sensitivity information (e.g., IPSO [Ken91]) is used and
 confidentiality is not considered necessary within the particular
 operational environment, AH can be used to authenticate the binding
 between sensitivity labels in the IP header and the IP payload
 (including user data). This is a significant improvement over
 labeled IPv4 networks where the sensitivity information is trusted
 even though there is no authentication or cryptographic binding of
 the information to the IP header and user data. IPv4 networks might
 or might not use explicit labelling. IPv6 will normally use implicit
 sensitivity information that is part of the IPsec Security
 Association but not transmitted with each packet instead of using
 explicit sensitivity information. All explicit IP sensitivity
 information MUST be authenticated using either ESP, AH, or both.

 Encryption is useful and can be desirable even when all of the hosts
 are within a protected environment, for example, behind a firewall or
 disjoint from any external connectivity. ESP can be used, in
 conjunction with appropriate key management and encryption
 algorithms, in support of both DAC and MAC. (The choice of
 encryption and authentication algorithms, and the assurance level of
 an IPsec implementation will determine the environments in which an
 implementation may be deemed sufficient to satisfy MLS requirements.)
 Key management can make use of sensitivity information to provide
 MAC. IPsec implementations on systems claiming to provide MLS SHOULD
 be capable of using IPsec to provide MAC for IP-based communications.

8.1 Relationship Between Security Associations and Data Sensitivity

 Both the Encapsulating Security Payload and the Authentication Header
 can be combined with appropriate Security Association policies to
 provide multi-level secure networking. In this case each SA (or SA
 bundle) is normally used for only a single instance of sensitivity
 information. For example, "PROPRIETARY - Internet Engineering" must
 be associated with a different SA (or SA bundle) from "PROPRIETARY -
 Finance".

8.2 Sensitivity Consistency Checking

 An MLS implementation (both host and router) MAY associate
 sensitivity information, or a range of sensitivity information with
 an interface, or a configured IP address with its associated prefix
 (the latter is sometimes referred to as a logical interface, or an

Kent & Atkinson Standards Track [Page 40]

RFC 2401 Security Architecture for IP November 1998

 interface alias). If such properties exist, an implementation SHOULD
 compare the sensitivity information associated with the packet
 against the sensitivity information associated with the interface or
 address/prefix from which the packet arrived, or through which the
 packet will depart. This check will either verify that the
 sensitivities match, or that the packet’s sensitivity falls within
 the range of the interface or address/prefix.

 The checking SHOULD be done on both inbound and outbound processing.

8.3 Additional MLS Attributes for Security Association Databases

 Section 4.4 discussed two Security Association databases (the
 Security Policy Database (SPD) and the Security Association Database
 (SAD)) and the associated policy selectors and SA attributes. MLS
 networking introduces an additional selector/attribute:

 - Sensitivity information.

 The Sensitivity information aids in selecting the appropriate
 algorithms and key strength, so that the traffic gets a level of
 protection appropriate to its importance or sensitivity as described
 in section 8.1. The exact syntax of the sensitivity information is
 implementation defined.

8.4 Additional Inbound Processing Steps for MLS Networking

 After an inbound packet has passed through IPsec processing, an MLS
 implementation SHOULD first check the packet’s sensitivity (as
 defined by the SA (or SA bundle) used for the packet) with the
 interface or address/prefix as described in section 8.2 before
 delivering the datagram to an upper-layer protocol or forwarding it.

 The MLS system MUST retain the binding between the data received in
 an IPsec protected packet and the sensitivity information in the SA
 or SAs used for processing, so appropriate policy decisions can be
 made when delivering the datagram to an application or forwarding
 engine. The means for maintaining this binding are implementation
 specific.

8.5 Additional Outbound Processing Steps for MLS Networking

 An MLS implementation of IPsec MUST perform two additional checks
 besides the normal steps detailed in section 5.1.1. When consulting
 the SPD or the SAD to find an outbound security association, the MLS
 implementation MUST use the sensitivity of the data to select an

Kent & Atkinson Standards Track [Page 41]

RFC 2401 Security Architecture for IP November 1998

 appropriate outbound SA or SA bundle. The second check comes before
 forwarding the packet out to its destination, and is the sensitivity
 consistency checking described in section 8.2.

8.6 Additional MLS Processing for Security Gateways

 An MLS security gateway MUST follow the previously mentioned inbound
 and outbound processing rules as well as perform some additional
 processing specific to the intermediate protection of packets in an
 MLS environment.

 A security gateway MAY act as an outbound proxy, creating SAs for MLS
 systems that originate packets forwarded by the gateway. These MLS
 systems may explicitly label the packets to be forwarded, or the
 whole originating network may have sensitivity characteristics
 associated with it. The security gateway MUST create and use
 appropriate SAs for AH, ESP, or both, to protect such traffic it
 forwards.

 Similarly such a gateway SHOULD accept and process inbound AH and/or
 ESP packets and forward appropriately, using explicit packet
 labeling, or relying on the sensitivity characteristics of the
 destination network.

9. Performance Issues

 The use of IPsec imposes computational performance costs on the hosts
 or security gateways that implement these protocols. These costs are
 associated with the memory needed for IPsec code and data structures,
 and the computation of integrity check values, encryption and
 decryption, and added per-packet handling. The per-packet
 computational costs will be manifested by increased latency and,
 possibly, reduced throughout. Use of SA/key management protocols,
 especially ones that employ public key cryptography, also adds
 computational performance costs to use of IPsec. These per-
 association computational costs will be manifested in terms of
 increased latency in association establishment. For many hosts, it
 is anticipated that software-based cryptography will not appreciably
 reduce throughput, but hardware may be required for security gateways
 (since they represent aggregation points), and for some hosts.

 The use of IPsec also imposes bandwidth utilization costs on
 transmission, switching, and routing components of the Internet
 infrastructure, components not implementing IPsec. This is due to
 the increase in the packet size resulting from the addition of AH
 and/or ESP headers, AH and ESP tunneling (which adds a second IP
 header), and the increased packet traffic associated with key
 management protocols. It is anticipated that, in most instances,

Kent & Atkinson Standards Track [Page 42]

RFC 2401 Security Architecture for IP November 1998

 this increased bandwidth demand will not noticeably affect the
 Internet infrastructure. However, in some instances, the effects may
 be significant, e.g., transmission of ESP encrypted traffic over a
 dialup link that otherwise would have compressed the traffic.

 Note: The initial SA establishment overhead will be felt in the first
 packet. This delay could impact the transport layer and application.
 For example, it could cause TCP to retransmit the SYN before the
 ISAKMP exchange is done. The effect of the delay would be different
 on UDP than TCP because TCP shouldn’t transmit anything other than
 the SYN until the connection is set up whereas UDP will go ahead and
 transmit data beyond the first packet.

 Note: As discussed earlier, compression can still be employed at
 layers above IP. There is an IETF working group (IP Payload
 Compression Protocol (ippcp)) working on "protocol specifications
 that make it possible to perform lossless compression on individual
 payloads before the payload is processed by a protocol that encrypts
 it. These specifications will allow for compression operations to be
 performed prior to the encryption of a payload by IPsec protocols."

10. Conformance Requirements

 All IPv4 systems that claim to implement IPsec MUST comply with all
 requirements of the Security Architecture document. All IPv6 systems
 MUST comply with all requirements of the Security Architecture
 document.

11. Security Considerations

 The focus of this document is security; hence security considerations
 permeate this specification.

12. Differences from RFC 1825

 This architecture document differs substantially from RFC 1825 in
 detail and in organization, but the fundamental notions are
 unchanged. This document provides considerable additional detail in
 terms of compliance specifications. It introduces the SPD and SAD,
 and the notion of SA selectors. It is aligned with the new versions
 of AH and ESP, which also differ from their predecessors. Specific
 requirements for supported combinations of AH and ESP are newly
 added, as are details of PMTU management.

Kent & Atkinson Standards Track [Page 43]

RFC 2401 Security Architecture for IP November 1998

Acknowledgements

 Many of the concepts embodied in this specification were derived from
 or influenced by the US Government’s SP3 security protocol, ISO/IEC’s
 NLSP, the proposed swIPe security protocol [SDNS, ISO, IB93, IBK93],
 and the work done for SNMP Security and SNMPv2 Security.

 For over 3 years (although it sometimes seems *much* longer), this
 document has evolved through multiple versions and iterations.
 During this time, many people have contributed significant ideas and
 energy to the process and the documents themselves. The authors
 would like to thank Karen Seo for providing extensive help in the
 review, editing, background research, and coordination for this
 version of the specification. The authors would also like to thank
 the members of the IPsec and IPng working groups, with special
 mention of the efforts of (in alphabetic order): Steve Bellovin,
 Steve Deering, James Hughes, Phil Karn, Frank Kastenholz, Perry
 Metzger, David Mihelcic, Hilarie Orman, Norman Shulman, William
 Simpson, Harry Varnis, and Nina Yuan.

Kent & Atkinson Standards Track [Page 44]

RFC 2401 Security Architecture for IP November 1998

Appendix A -- Glossary

 This section provides definitions for several key terms that are
 employed in this document. Other documents provide additional
 definitions and background information relevant to this technology,
 e.g., [VK83, HA94]. Included in this glossary are generic security
 service and security mechanism terms, plus IPsec-specific terms.

 Access Control
 Access control is a security service that prevents unauthorized
 use of a resource, including the prevention of use of a resource
 in an unauthorized manner. In the IPsec context, the resource
 to which access is being controlled is often:
 o for a host, computing cycles or data
 o for a security gateway, a network behind the gateway
 or
 bandwidth on that network.

 Anti-replay
 [See "Integrity" below]

 Authentication
 This term is used informally to refer to the combination of two
 nominally distinct security services, data origin authentication
 and connectionless integrity. See the definitions below for
 each of these services.

 Availability
 Availability, when viewed as a security service, addresses the
 security concerns engendered by attacks against networks that
 deny or degrade service. For example, in the IPsec context, the
 use of anti-replay mechanisms in AH and ESP support
 availability.

 Confidentiality
 Confidentiality is the security service that protects data from
 unauthorized disclosure. The primary confidentiality concern in
 most instances is unauthorized disclosure of application level
 data, but disclosure of the external characteristics of
 communication also can be a concern in some circumstances.
 Traffic flow confidentiality is the service that addresses this
 latter concern by concealing source and destination addresses,
 message length, or frequency of communication. In the IPsec
 context, using ESP in tunnel mode, especially at a security
 gateway, can provide some level of traffic flow confidentiality.
 (See also traffic analysis, below.)

Kent & Atkinson Standards Track [Page 45]

RFC 2401 Security Architecture for IP November 1998

 Encryption
 Encryption is a security mechanism used to transform data from
 an intelligible form (plaintext) into an unintelligible form
 (ciphertext), to provide confidentiality. The inverse
 transformation process is designated "decryption". Oftimes the
 term "encryption" is used to generically refer to both
 processes.

 Data Origin Authentication
 Data origin authentication is a security service that verifies
 the identity of the claimed source of data. This service is
 usually bundled with connectionless integrity service.

 Integrity
 Integrity is a security service that ensures that modifications
 to data are detectable. Integrity comes in various flavors to
 match application requirements. IPsec supports two forms of
 integrity: connectionless and a form of partial sequence
 integrity. Connectionless integrity is a service that detects
 modification of an individual IP datagram, without regard to the
 ordering of the datagram in a stream of traffic. The form of
 partial sequence integrity offered in IPsec is referred to as
 anti-replay integrity, and it detects arrival of duplicate IP
 datagrams (within a constrained window). This is in contrast to
 connection-oriented integrity, which imposes more stringent
 sequencing requirements on traffic, e.g., to be able to detect
 lost or re-ordered messages. Although authentication and
 integrity services often are cited separately, in practice they
 are intimately connected and almost always offered in tandem.

 Security Association (SA)
 A simplex (uni-directional) logical connection, created for
 security purposes. All traffic traversing an SA is provided the
 same security processing. In IPsec, an SA is an internet layer
 abstraction implemented through the use of AH or ESP.

 Security Gateway
 A security gateway is an intermediate system that acts as the
 communications interface between two networks. The set of hosts
 (and networks) on the external side of the security gateway is
 viewed as untrusted (or less trusted), while the networks and
 hosts and on the internal side are viewed as trusted (or more
 trusted). The internal subnets and hosts served by a security
 gateway are presumed to be trusted by virtue of sharing a
 common, local, security administration. (See "Trusted
 Subnetwork" below.) In the IPsec context, a security gateway is
 a point at which AH and/or ESP is implemented in order to serve

Kent & Atkinson Standards Track [Page 46]

RFC 2401 Security Architecture for IP November 1998

 a set of internal hosts, providing security services for these
 hosts when they communicate with external hosts also employing
 IPsec (either directly or via another security gateway).

 SPI
 Acronym for "Security Parameters Index". The combination of a
 destination address, a security protocol, and an SPI uniquely
 identifies a security association (SA, see above). The SPI is
 carried in AH and ESP protocols to enable the receiving system
 to select the SA under which a received packet will be
 processed. An SPI has only local significance, as defined by
 the creator of the SA (usually the receiver of the packet
 carrying the SPI); thus an SPI is generally viewed as an opaque
 bit string. However, the creator of an SA may choose to
 interpret the bits in an SPI to facilitate local processing.

 Traffic Analysis
 The analysis of network traffic flow for the purpose of deducing
 information that is useful to an adversary. Examples of such
 information are frequency of transmission, the identities of the
 conversing parties, sizes of packets, flow identifiers, etc.
 [Sch94]

 Trusted Subnetwork
 A subnetwork containing hosts and routers that trust each other
 not to engage in active or passive attacks. There also is an
 assumption that the underlying communications channel (e.g., a
 LAN or CAN) isn’t being attacked by other means.

Kent & Atkinson Standards Track [Page 47]

RFC 2401 Security Architecture for IP November 1998

Appendix B -- Analysis/Discussion of PMTU/DF/Fragmentation Issues

B.1 DF bit

 In cases where a system (host or gateway) adds an encapsulating
 header (e.g., ESP tunnel), should/must the DF bit in the original
 packet be copied to the encapsulating header?

 Fragmenting seems correct for some situations, e.g., it might be
 appropriate to fragment packets over a network with a very small MTU,
 e.g., a packet radio network, or a cellular phone hop to mobile node,
 rather than propagate back a very small PMTU for use over the rest of
 the path. In other situations, it might be appropriate to set the DF
 bit in order to get feedback from later routers about PMTU
 constraints which require fragmentation. The existence of both of
 these situations argues for enabling a system to decide whether or
 not to fragment over a particular network "link", i.e., for requiring
 an implementation to be able to copy the DF bit (and to process ICMP
 PMTU messages), but making it an option to be selected on a per
 interface basis. In other words, an administrator should be able to
 configure the router’s treatment of the DF bit (set, clear, copy from
 encapsulated header) for each interface.

 Note: If a bump-in-the-stack implementation of IPsec attempts to
 apply different IPsec algorithms based on source/destination ports,
 it will be difficult to apply Path MTU adjustments.

B.2 Fragmentation

 If required, IP fragmentation occurs after IPsec processing within an
 IPsec implementation. Thus, transport mode AH or ESP is applied only
 to whole IP datagrams (not to IP fragments). An IP packet to which
 AH or ESP has been applied may itself be fragmented by routers en
 route, and such fragments MUST be reassembled prior to IPsec
 processing at a receiver. In tunnel mode, AH or ESP is applied to an
 IP packet, the payload of which may be a fragmented IP packet. For
 example, a security gateway, "bump-in-the-stack" (BITS), or "bump-
 in-the-wire" (BITW) IPsec implementation may apply tunnel mode AH to
 such fragments. Note that BITS or BITW implementations are examples
 of where a host IPsec implementation might receive fragments to which
 tunnel mode is to be applied. However, if transport mode is to be
 applied, then these implementations MUST reassemble the fragments
 prior to applying IPsec.

Kent & Atkinson Standards Track [Page 48]

RFC 2401 Security Architecture for IP November 1998

 NOTE: IPsec always has to figure out what the encapsulating IP header
 fields are. This is independent of where you insert IPsec and is
 intrinsic to the definition of IPsec. Therefore any IPsec
 implementation that is not integrated into an IP implementation must
 include code to construct the necessary IP headers (e.g., IP2):

 o AH-tunnel --> IP2-AH-IP1-Transport-Data
 o ESP-tunnel --> IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer

 Overall, the fragmentation/reassembly approach described above works
 for all cases examined.

 AH Xport AH Tunnel ESP Xport ESP Tunnel
 Implementation approach IPv4 IPv6 IPv4 IPv6 IPv4 IPv6 IPv4 IPv6
 ----------------------- ---- ---- ---- ---- ---- ---- ---- ----
 Hosts (integr w/ IP stack) Y Y Y Y Y Y Y Y
 Hosts (betw/ IP and drivers) Y Y Y Y Y Y Y Y
 S. Gwy (integr w/ IP stack) Y Y Y Y
 Outboard crypto processor *

 * If the crypto processor system has its own IP address, then it
 is covered by the security gateway case. This box receives
 the packet from the host and performs IPsec processing. It
 has to be able to handle the same AH, ESP, and related
 IPv4/IPv6 tunnel processing that a security gateway would have
 to handle. If it doesn’t have it’s own address, then it is
 similar to the bump-in-the stack implementation between IP and
 the network drivers.

 The following analysis assumes that:

 1. There is only one IPsec module in a given system’s stack.
 There isn’t an IPsec module A (adding ESP/encryption and
 thus) hiding the transport protocol, SRC port, and DEST port
 from IPsec module B.
 2. There are several places where IPsec could be implemented (as
 shown in the table above).
 a. Hosts with integration of IPsec into the native IP
 implementation. Implementer has access to the source
 for the stack.
 b. Hosts with bump-in-the-stack implementations, where
 IPsec is implemented between IP and the local network
 drivers. Source access for stack is not available;
 but there are well-defined interfaces that allows the
 IPsec code to be incorporated into the system.

Kent & Atkinson Standards Track [Page 49]

RFC 2401 Security Architecture for IP November 1998

 c. Security gateways and outboard crypto processors with
 integration of IPsec into the stack.
 3. Not all of the above approaches are feasible in all hosts.
 But it was assumed that for each approach, there are some
 hosts for whom the approach is feasible.

 For each of the above 3 categories, there are IPv4 and IPv6, AH
 transport and tunnel modes, and ESP transport and tunnel modes -- for
 a total of 24 cases (3 x 2 x 4).

 Some header fields and interface fields are listed here for ease of
 reference -- they’re not in the header order, but instead listed to
 allow comparison between the columns. (* = not covered by AH
 authentication. ESP authentication doesn’t cover any headers that
 precede it.)

 IP/Transport Interface
 IPv4 IPv6 (RFC 1122 -- Sec 3.4)
 ---- ---- ----------------------
 Version = 4 Version = 6
 Header Len
 *TOS Class,Flow Lbl TOS
 Packet Len Payload Len Len
 ID ID (optional)
 *Flags DF
 *Offset
 *TTL *Hop Limit TTL
 Protocol Next Header
 *Checksum
 Src Address Src Address Src Address
 Dst Address Dst Address Dst Address
 Options? Options? Opt

 ? = AH covers Option-Type and Option-Length, but
 might not cover Option-Data.

 The results for each of the 20 cases is shown below ("works" = will
 work if system fragments after outbound IPsec processing, reassembles
 before inbound IPsec processing). Notes indicate implementation
 issues.

 a. Hosts (integrated into IP stack)
 o AH-transport --> (IP1-AH-Transport-Data)
 - IPv4 -- works
 - IPv6 -- works
 o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
 - IPv4 -- works
 - IPv6 -- works

Kent & Atkinson Standards Track [Page 50]

RFC 2401 Security Architecture for IP November 1998

 o ESP-transport --> (IP1-ESP_hdr-Transport-Data-ESP_trailer)
 - IPv4 -- works
 - IPv6 -- works
 o ESP-tunnel --> (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
 - IPv4 -- works
 - IPv6 -- works

 b. Hosts (Bump-in-the-stack) -- put IPsec between IP layer and
 network drivers. In this case, the IPsec module would have to do
 something like one of the following for fragmentation and
 reassembly.
 - do the fragmentation/reassembly work itself and
 send/receive the packet directly to/from the network
 layer. In AH or ESP transport mode, this is fine. In AH
 or ESP tunnel mode where the tunnel end is at the ultimate
 destination, this is fine. But in AH or ESP tunnel modes
 where the tunnel end is different from the ultimate
 destination and where the source host is multi-homed, this
 approach could result in sub-optimal routing because the
 IPsec module may be unable to obtain the information
 needed (LAN interface and next-hop gateway) to direct the
 packet to the appropriate network interface. This is not
 a problem if the interface and next-hop gateway are the
 same for the ultimate destination and for the tunnel end.
 But if they are different, then IPsec would need to know
 the LAN interface and the next-hop gateway for the tunnel
 end. (Note: The tunnel end (security gateway) is highly
 likely to be on the regular path to the ultimate
 destination. But there could also be more than one path
 to the destination, e.g., the host could be at an
 organization with 2 firewalls. And the path being used
 could involve the less commonly chosen firewall.) OR
 - pass the IPsec’d packet back to the IP layer where an
 extra IP header would end up being pre-pended and the
 IPsec module would have to check and let IPsec’d fragments
 go by.
 OR
 - pass the packet contents to the IP layer in a form such
 that the IP layer recreates an appropriate IP header

 At the network layer, the IPsec module will have access to the
 following selectors from the packet -- SRC address, DST address,
 Next Protocol, and if there’s a transport layer header --> SRC
 port and DST port. One cannot assume IPsec has access to the
 Name. It is assumed that the available selector information is
 sufficient to figure out the relevant Security Policy entry and
 Security Association(s).

Kent & Atkinson Standards Track [Page 51]

RFC 2401 Security Architecture for IP November 1998

 o AH-transport --> (IP1-AH-Transport-Data)
 - IPv4 -- works
 - IPv6 -- works
 o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
 - IPv4 -- works
 - IPv6 -- works
 o ESP-transport --> (IP1-ESP_hdr-Transport-Data-ESP_trailer)
 - IPv4 -- works
 - IPv6 -- works
 o ESP-tunnel --> (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
 - IPv4 -- works
 - IPv6 -- works

 c. Security gateways -- integrate IPsec into the IP stack

 NOTE: The IPsec module will have access to the following
 selectors from the packet -- SRC address, DST address, Next
 Protocol, and if there’s a transport layer header --> SRC port
 and DST port. It won’t have access to the User ID (only Hosts
 have access to User ID information.) Unlike some Bump-in-the-
 stack implementations, security gateways may be able to look up
 the Source Address in the DNS to provide a System Name, e.g., in
 situations involving use of dynamically assigned IP addresses in
 conjunction with dynamically updated DNS entries. It also won’t
 have access to the transport layer information if there is an ESP
 header, or if it’s not the first fragment of a fragmented
 message. It is assumed that the available selector information
 is sufficient to figure out the relevant Security Policy entry
 and Security Association(s).

 o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
 - IPv4 -- works
 - IPv6 -- works
 o ESP-tunnel --> (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
 - IPv4 -- works
 - IPv6 -- works

 **

B.3 Path MTU Discovery

 As mentioned earlier, "ICMP PMTU" refers to an ICMP message used for
 Path MTU Discovery.

 The legend for the diagrams below in B.3.1 and B.3.3 (but not B.3.2)
 is:

 ==== = security association (AH or ESP, transport or tunnel)

Kent & Atkinson Standards Track [Page 52]

RFC 2401 Security Architecture for IP November 1998

 ---- = connectivity (or if so labelled, administrative boundary)
 = ICMP message (hereafter referred to as ICMP PMTU) for

 IPv4:
 - Type = 3 (Destination Unreachable)
 - Code = 4 (Fragmentation needed and DF set)
 - Next-Hop MTU in the low-order 16 bits of the second
 word of the ICMP header (labelled unused in RFC 792),
 with high-order 16 bits set to zero

 IPv6 (RFC 1885):
 - Type = 2 (Packet Too Big)
 - Code = 0 (Fragmentation needed and DF set)
 - Next-Hop MTU in the 32 bit MTU field of the ICMP6

 Hx = host x
 Rx = router x
 SGx = security gateway x
 X* = X supports IPsec

B.3.1 Identifying the Originating Host(s)

The amount of information returned with the ICMP message is limited
and this affects what selectors are available to identify security
associations, originating hosts, etc. for use in further propagating
the PMTU information.

In brief... An ICMP message must contain the following information
from the "offending" packet:
 - IPv4 (RFC 792) -- IP header plus a minimum of 64 bits

Accordingly, in the IPv4 context, an ICMP PMTU may identify only the
first (outermost) security association. This is because the ICMP
PMTU may contain only 64 bits of the "offending" packet beyond the IP
header, which would capture only the first SPI from AH or ESP. In
the IPv6 context, an ICMP PMTU will probably provide all the SPIs and
the selectors in the IP header, but maybe not the SRC/DST ports (in
the transport header) or the encapsulated (TCP, UDP, etc.) protocol.
Moreover, if ESP is used, the transport ports and protocol selectors
may be encrypted.

Looking at the diagram below of a security gateway tunnel (as
mentioned elsewhere, security gateways do not use transport mode)...

Kent & Atkinson Standards Track [Page 53]

RFC 2401 Security Architecture for IP November 1998

 H1 =================== H3
 \ | | /
 H0 -- SG1* ---- R1 ---- SG2* ---- R2 -- H5
 / ^ | \
 H2 |........| H4

 Suppose that the security policy for SG1 is to use a single SA to SG2
 for all the traffic between hosts H0, H1, and H2 and hosts H3, H4,
 and H5. And suppose H0 sends a data packet to H5 which causes R1 to
 send an ICMP PMTU message to SG1. If the PMTU message has only the
 SPI, SG1 will be able to look up the SA and find the list of possible
 hosts (H0, H1, H2, wildcard); but SG1 will have no way to figure out
 that H0 sent the traffic that triggered the ICMP PMTU message.

 original after IPsec ICMP
 packet processing packet
 -------- ----------- ------
 IP-3 header (S = R1, D = SG1)
 ICMP header (includes PMTU)
 IP-2 header IP-2 header (S = SG1, D = SG2)
 ESP header minimum of 64 bits of ESP hdr (*)
 IP-1 header IP-1 header
 TCP header TCP header
 TCP data TCP data
 ESP trailer

 (*) The 64 bits will include enough of the ESP (or AH) header to
 include the SPI.
 - ESP -- SPI (32 bits), Seq number (32 bits)
 - AH -- Next header (8 bits), Payload Len (8 bits),
 Reserved (16 bits), SPI (32 bits)

 This limitation on the amount of information returned with an ICMP
 message creates a problem in identifying the originating hosts for
 the packet (so as to know where to further propagate the ICMP PMTU
 information). If the ICMP message contains only 64 bits of the IPsec
 header (minimum for IPv4), then the IPsec selectors (e.g., Source and
 Destination addresses, Next Protocol, Source and Destination ports,
 etc.) will have been lost. But the ICMP error message will still
 provide SG1 with the SPI, the PMTU information and the source and
 destination gateways for the relevant security association.

 The destination security gateway and SPI uniquely define a security
 association which in turn defines a set of possible originating
 hosts. At this point, SG1 could:

Kent & Atkinson Standards Track [Page 54]

RFC 2401 Security Architecture for IP November 1998

 a. send the PMTU information to all the possible originating hosts.
 This would not work well if the host list is a wild card or if
 many/most of the hosts weren’t sending to SG1; but it might work
 if the SPI/destination/etc mapped to just one or a small number of
 hosts.
 b. store the PMTU with the SPI/etc and wait until the next packet(s)
 arrive from the originating host(s) for the relevant security
 association. If it/they are bigger than the PMTU, drop the
 packet(s), and compose ICMP PMTU message(s) with the new packet(s)
 and the updated PMTU, and send the originating host(s) the ICMP
 message(s) about the problem. This involves a delay in notifying
 the originating host(s), but avoids the problems of (a).

 Since only the latter approach is feasible in all instances, a
 security gateway MUST provide such support, as an option. However,
 if the ICMP message contains more information from the original
 packet, then there may be enough information to immediately determine
 to which host to propagate the ICMP/PMTU message and to provide that
 system with the 5 fields (source address, destination address, source
 port, destination port, and transport protocol) needed to determine
 where to store/update the PMTU. Under such circumstances, a security
 gateway MUST generate an ICMP PMTU message immediately upon receipt
 of an ICMP PMTU from further down the path. NOTE: The Next Protocol
 field may not be contained in the ICMP message and the use of ESP
 encryption may hide the selector fields that have been encrypted.

B.3.2 Calculation of PMTU

 The calculation of PMTU from an ICMP PMTU has to take into account
 the addition of any IPsec header by H1 -- AH and/or ESP transport, or
 ESP or AH tunnel. Within a single host, multiple applications may
 share an SPI and nesting of security associations may occur. (See
 Section 4.5 Basic Combinations of Security Associations for
 description of the combinations that MUST be supported). The diagram
 below illustrates an example of security associations between a pair
 of hosts (as viewed from the perspective of one of the hosts.) (ESPx
 or AHx = transport mode)

 Socket 1 -------------------------|
 |
 Socket 2 (ESPx/SPI-A) ---------- AHx (SPI-B) -- Internet

 In order to figure out the PMTU for each socket that maps to SPI-B,
 it will be necessary to have backpointers from SPI-B to each of the 2
 paths that lead to it -- Socket 1 and Socket 2/SPI-A.

Kent & Atkinson Standards Track [Page 55]

RFC 2401 Security Architecture for IP November 1998

B.3.3 Granularity of Maintaining PMTU Data

 In hosts, the granularity with which PMTU ICMP processing can be done
 differs depending on the implementation situation. Looking at a
 host, there are three situations that are of interest with respect to
 PMTU issues:

 a. Integration of IPsec into the native IP implementation
 b. Bump-in-the-stack implementations, where IPsec is implemented
 "underneath" an existing implementation of a TCP/IP protocol
 stack, between the native IP and the local network drivers
 c. No IPsec implementation -- This case is included because it is
 relevant in cases where a security gateway is sending PMTU
 information back to a host.

 Only in case (a) can the PMTU data be maintained at the same
 granularity as communication associations. In the other cases, the
 IP layer will maintain PMTU data at the granularity of Source and
 Destination IP addresses (and optionally TOS/Class), as described in
 RFC 1191. This is an important difference, because more than one
 communication association may map to the same source and destination
 IP addresses, and each communication association may have a different
 amount of IPsec header overhead (e.g., due to use of different
 transforms or different algorithms). The examples below illustrate
 this.

 In cases (a) and (b)... Suppose you have the following situation.
 H1 is sending to H2 and the packet to be sent from R1 to R2 exceeds
 the PMTU of the network hop between them.

 ==================================
 | |
 H1* --- R1 ----- R2 ---- R3 ---- H2*
 ^ |
 |.......|

 If R1 is configured to not fragment subscriber traffic, then R1 sends
 an ICMP PMTU message with the appropriate PMTU to H1. H1’s
 processing would vary with the nature of the implementation. In case
 (a) (native IP), the security services are bound to sockets or the
 equivalent. Here the IP/IPsec implementation in H1 can store/update
 the PMTU for the associated socket. In case (b), the IP layer in H1
 can store/update the PMTU but only at the granularity of Source and
 Destination addresses and possibly TOS/Class, as noted above. So the
 result may be sub-optimal, since the PMTU for a given
 SRC/DST/TOS/Class will be the subtraction of the largest amount of
 IPsec header used for any communication association between a given
 source and destination.

Kent & Atkinson Standards Track [Page 56]

RFC 2401 Security Architecture for IP November 1998

 In case (c), there has to be a security gateway to have any IPsec
 processing. So suppose you have the following situation. H1 is
 sending to H2 and the packet to be sent from SG1 to R exceeds the
 PMTU of the network hop between them.

 ================
 | |
 H1 ---- SG1* --- R --- SG2* ---- H2
 ^ |
 |.......|

 As described above for case (b), the IP layer in H1 can store/update
 the PMTU but only at the granularity of Source and Destination
 addresses, and possibly TOS/Class. So the result may be sub-optimal,
 since the PMTU for a given SRC/DST/TOS/Class will be the subtraction
 of the largest amount of IPsec header used for any communication
 association between a given source and destination.

B.3.4 Per Socket Maintenance of PMTU Data

 Implementation of the calculation of PMTU (Section B.3.2) and support
 for PMTUs at the granularity of individual "communication
 associations" (Section B.3.3) is a local matter. However, a socket-
 based implementation of IPsec in a host SHOULD maintain the
 information on a per socket basis. Bump in the stack systems MUST
 pass an ICMP PMTU to the host IP implementation, after adjusting it
 for any IPsec header overhead added by these systems. The
 determination of the overhead SHOULD be determined by analysis of the
 SPI and any other selector information present in a returned ICMP
 PMTU message.

B.3.5 Delivery of PMTU Data to the Transport Layer

 The host mechanism for getting the updated PMTU to the transport
 layer is unchanged, as specified in RFC 1191 (Path MTU Discovery).

B.3.6 Aging of PMTU Data

 This topic is covered in Section 6.1.2.4.

Kent & Atkinson Standards Track [Page 57]

RFC 2401 Security Architecture for IP November 1998

Appendix C -- Sequence Space Window Code Example

 This appendix contains a routine that implements a bitmask check for
 a 32 packet window. It was provided by James Hughes
 (jim_hughes@stortek.com) and Harry Varnis (hgv@anubis.network.com)
 and is intended as an implementation example. Note that this code
 both checks for a replay and updates the window. Thus the algorithm,
 as shown, should only be called AFTER the packet has been
 authenticated. Implementers might wish to consider splitting the
 code to do the check for replays before computing the ICV. If the
 packet is not a replay, the code would then compute the ICV, (discard
 any bad packets), and if the packet is OK, update the window.

#include <stdio.h>
#include <stdlib.h>
typedef unsigned long u_long;

enum {
 ReplayWindowSize = 32
};

u_long bitmap = 0; /* session state - must be 32 bits */
u_long lastSeq = 0; /* session state */

/* Returns 0 if packet disallowed, 1 if packet permitted */
int ChkReplayWindow(u_long seq);

int ChkReplayWindow(u_long seq) {
 u_long diff;

 if (seq == 0) return 0; /* first == 0 or wrapped */
 if (seq > lastSeq) { /* new larger sequence number */
 diff = seq - lastSeq;
 if (diff < ReplayWindowSize) { /* In window */
 bitmap <<= diff;
 bitmap |= 1; /* set bit for this packet */
 } else bitmap = 1; /* This packet has a "way larger" */
 lastSeq = seq;
 return 1; /* larger is good */
 }
 diff = lastSeq - seq;
 if (diff >= ReplayWindowSize) return 0; /* too old or wrapped */
 if (bitmap & ((u_long)1 << diff)) return 0; /* already seen */
 bitmap |= ((u_long)1 << diff); /* mark as seen */
 return 1; /* out of order but good */
}

char string_buffer[512];

Kent & Atkinson Standards Track [Page 58]

RFC 2401 Security Architecture for IP November 1998

#define STRING_BUFFER_SIZE sizeof(string_buffer)

int main() {
 int result;
 u_long last, current, bits;

 printf("Input initial state (bits in hex, last msgnum):\n");
 if (!fgets(string_buffer, STRING_BUFFER_SIZE, stdin)) exit(0);
 sscanf(string_buffer, "%lx %lu", &bits, &last);
 if (last != 0)
 bits |= 1;
 bitmap = bits;
 lastSeq = last;
 printf("bits:%08lx last:%lu\n", bitmap, lastSeq);
 printf("Input value to test (current):\n");

 while (1) {
 if (!fgets(string_buffer, STRING_BUFFER_SIZE, stdin)) break;
 sscanf(string_buffer, "%lu", ¤t);
 result = ChkReplayWindow(current);
 printf("%-3s", result ? "OK" : "BAD");
 printf(" bits:%08lx last:%lu\n", bitmap, lastSeq);
 }
 return 0;
}

Kent & Atkinson Standards Track [Page 59]

RFC 2401 Security Architecture for IP November 1998

Appendix D -- Categorization of ICMP messages

The tables below characterize ICMP messages as being either host
generated, router generated, both, unassigned/unknown. The first set
are IPv4. The second set are IPv6.

 IPv4

Type Name/Codes Reference
==
HOST GENERATED:
 3 Destination Unreachable
 2 Protocol Unreachable [RFC792]
 3 Port Unreachable [RFC792]
 8 Source Host Isolated [RFC792]
 14 Host Precedence Violation [RFC1812]
 10 Router Selection [RFC1256]

Type Name/Codes Reference
==
ROUTER GENERATED:
 3 Destination Unreachable
 0 Net Unreachable [RFC792]
 4 Fragmentation Needed, Don’t Fragment was Set [RFC792]
 5 Source Route Failed [RFC792]
 6 Destination Network Unknown [RFC792]
 7 Destination Host Unknown [RFC792]
 9 Comm. w/Dest. Net. is Administratively Prohibited [RFC792]
 11 Destination Network Unreachable for Type of Service[RFC792]
 5 Redirect
 0 Redirect Datagram for the Network (or subnet) [RFC792]
 2 Redirect Datagram for the Type of Service & Network[RFC792]
 9 Router Advertisement [RFC1256]
 18 Address Mask Reply [RFC950]

Kent & Atkinson Standards Track [Page 60]

RFC 2401 Security Architecture for IP November 1998

 IPv4
Type Name/Codes Reference
==
BOTH ROUTER AND HOST GENERATED:
 0 Echo Reply [RFC792]
 3 Destination Unreachable
 1 Host Unreachable [RFC792]
 10 Comm. w/Dest. Host is Administratively Prohibited [RFC792]
 12 Destination Host Unreachable for Type of Service [RFC792]
 13 Communication Administratively Prohibited [RFC1812]
 15 Precedence cutoff in effect [RFC1812]
 4 Source Quench [RFC792]
 5 Redirect
 1 Redirect Datagram for the Host [RFC792]
 3 Redirect Datagram for the Type of Service and Host [RFC792]
 6 Alternate Host Address [JBP]
 8 Echo [RFC792]
 11 Time Exceeded [RFC792]
 12 Parameter Problem [RFC792,RFC1108]
 13 Timestamp [RFC792]
 14 Timestamp Reply [RFC792]
 15 Information Request [RFC792]
 16 Information Reply [RFC792]
 17 Address Mask Request [RFC950]
 30 Traceroute [RFC1393]
 31 Datagram Conversion Error [RFC1475]
 32 Mobile Host Redirect [Johnson]
 39 SKIP [Markson]
 40 Photuris [Simpson]

Type Name/Codes Reference
==
UNASSIGNED TYPE OR UNKNOWN GENERATOR:
 1 Unassigned [JBP]
 2 Unassigned [JBP]
 7 Unassigned [JBP]
 19 Reserved (for Security) [Solo]
 20-29 Reserved (for Robustness Experiment) [ZSu]
 33 IPv6 Where-Are-You [Simpson]
 34 IPv6 I-Am-Here [Simpson]
 35 Mobile Registration Request [Simpson]
 36 Mobile Registration Reply [Simpson]
 37 Domain Name Request [Simpson]
 38 Domain Name Reply [Simpson]
 41-255 Reserved [JBP]

Kent & Atkinson Standards Track [Page 61]

RFC 2401 Security Architecture for IP November 1998

 IPv6

Type Name/Codes Reference
==
HOST GENERATED:
 1 Destination Unreachable [RFC 1885]
 4 Port Unreachable

Type Name/Codes Reference
==
ROUTER GENERATED:
 1 Destination Unreachable [RFC1885]
 0 No Route to Destination
 1 Comm. w/Destination is Administratively Prohibited
 2 Not a Neighbor
 3 Address Unreachable
 2 Packet Too Big [RFC1885]
 0
 3 Time Exceeded [RFC1885]
 0 Hop Limit Exceeded in Transit
 1 Fragment reassembly time exceeded

Type Name/Codes Reference
==
BOTH ROUTER AND HOST GENERATED:
 4 Parameter Problem [RFC1885]
 0 Erroneous Header Field Encountered
 1 Unrecognized Next Header Type Encountered
 2 Unrecognized IPv6 Option Encountered

Kent & Atkinson Standards Track [Page 62]

RFC 2401 Security Architecture for IP November 1998

References

 [BL73] Bell, D.E. & LaPadula, L.J., "Secure Computer Systems:
 Mathematical Foundations and Model", Technical Report M74-
 244, The MITRE Corporation, Bedford, MA, May 1973.

 [Bra97] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Level", BCP 14, RFC 2119, March 1997.

 [DoD85] US National Computer Security Center, "Department of
 Defense Trusted Computer System Evaluation Criteria", DoD
 5200.28-STD, US Department of Defense, Ft. Meade, MD.,
 December 1985.

 [DoD87] US National Computer Security Center, "Trusted Network
 Interpretation of the Trusted Computer System Evaluation
 Criteria", NCSC-TG-005, Version 1, US Department of
 Defense, Ft. Meade, MD., 31 July 1987.

 [HA94] Haller, N., and R. Atkinson, "On Internet Authentication",
 RFC 1704, October 1994.

 [HC98] Harkins, D., and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [HM97] Harney, H., and C. Muckenhirn, "Group Key Management
 Protocol (GKMP) Architecture", RFC 2094, July 1997.

 [ISO] ISO/IEC JTC1/SC6, Network Layer Security Protocol, ISO-IEC
 DIS 11577, International Standards Organisation, Geneva,
 Switzerland, 29 November 1992.

 [IB93] John Ioannidis and Matt Blaze, "Architecture and
 Implementation of Network-layer Security Under Unix",
 Proceedings of USENIX Security Symposium, Santa Clara, CA,
 October 1993.

 [IBK93] John Ioannidis, Matt Blaze, & Phil Karn, "swIPe: Network-
 Layer Security for IP", presentation at the Spring 1993
 IETF Meeting, Columbus, Ohio

 [KA98a] Kent, S., and R. Atkinson, "IP Authentication Header", RFC
 2402, November 1998.

 [KA98b] Kent, S., and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

Kent & Atkinson Standards Track [Page 63]

RFC 2401 Security Architecture for IP November 1998

 [Ken91] Kent, S., "US DoD Security Options for the Internet
 Protocol", RFC 1108, November 1991.

 [MSST97] Maughan, D., Schertler, M., Schneider, M., and J. Turner,
 "Internet Security Association and Key Management Protocol
 (ISAKMP)", RFC 2408, November 1998.

 [Orm97] Orman, H., "The OAKLEY Key Determination Protocol", RFC
 2412, November 1998.

 [Pip98] Piper, D., "The Internet IP Security Domain of
 Interpretation for ISAKMP", RFC 2407, November 1998.

 [Sch94] Bruce Schneier, Applied Cryptography, Section 8.6, John
 Wiley & Sons, New York, NY, 1994.

 [SDNS] SDNS Secure Data Network System, Security Protocol 3, SP3,
 Document SDN.301, Revision 1.5, 15 May 1989, published in
 NIST Publication NIST-IR-90-4250, February 1990.

 [SMPT98] Shacham, A., Monsour, R., Pereira, R., and M. Thomas, "IP
 Payload Compression Protocol (IPComp)", RFC 2393, August
 1998.

 [TDG97] Thayer, R., Doraswamy, N., and R. Glenn, "IP Security
 Document Roadmap", RFC 2411, November 1998.

 [VK83] V.L. Voydock & S.T. Kent, "Security Mechanisms in High-
 level Networks", ACM Computing Surveys, Vol. 15, No. 2,
 June 1983.

Disclaimer

 The views and specification expressed in this document are those of
 the authors and are not necessarily those of their employers. The
 authors and their employers specifically disclaim responsibility for
 any problems arising from correct or incorrect implementation or use
 of this design.

Kent & Atkinson Standards Track [Page 64]

RFC 2401 Security Architecture for IP November 1998

Author Information

 Stephen Kent
 BBN Corporation
 70 Fawcett Street
 Cambridge, MA 02140
 USA

 Phone: +1 (617) 873-3988
 EMail: kent@bbn.com

 Randall Atkinson
 @Home Network
 425 Broadway
 Redwood City, CA 94063
 USA

 Phone: +1 (415) 569-5000
 EMail: rja@corp.home.net

Kent & Atkinson Standards Track [Page 65]

RFC 2401 Security Architecture for IP November 1998

Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Kent & Atkinson Standards Track [Page 66]

